Исходные понятия. Длина описания задачи. Кодирование описания. Число бит информации, необходимых для формулировки задачи. Время решения, или число арифметических операций, требуемых для решения задачи. Водораздел между полиномиальными и переборными алгоритмами.
2. Задачи распознавания и оптимизации
Роль задач распознавания в теории алгоритмов. Сводимость оптимизации к распознаванию — почти всегда. Задача о простоте числа. О труднорешаемости задачи разложения на множители составного числа.
3. P- и NP-задачи
Определение классов P и NP. Совпадает ли P с NP или не совпадает — вопрос на миллион долларов. Феноменальный прорыв в изучении труднорешаемых задач в связи с открытием NP-класса.
4. Машины Тьюринга
Машина Тьюринга как универсальный вычислительный прибор. Контраст примитивности устройства с фантастическими возможностями. Тезис Тьюринга. Задача Тьюринга как универсальная переборная (NP-полная) задача.
5. Опорные комбинаторные задачи
Джентльменский набор комбинаторных задач. Минимальное остовное дерево (МОД). Задача коммивояжера. Задачи: клика, изоморфизм графов, паросочетание, рюкзак, целочисленное линейное программирование (ЦЛП), транспортная задача. В двух словах о непрерывной задаче линейного программирования. Логические задача ВЫПОЛНИМОСТЬ.
6. Теорема Кука
Теорема Кука устанавливает NP-полноту задачи ВЫПОЛНИМОСТЬ, трансформируя проблематику в область задач, которые можно «пощупать».
Лекции читает Опойцев Валерий Иванович, доктор физико-математических наук, профессор МФТИ, гл. н. с. ИПУ РАН. oschool.ru
Идеальный газ. Уравнение состояния газа. Взаимосвязь давления, температуры и объёма. Механизмы рождения макропараметров в рамках «молекулярного бильярда». Первое начало термодинамики как закон сохранения энергии. Вывод уравнения Бернулли. Энтропия и второе начало термодинамики. Тепловые машины и цикл Карно. Энтропия информационная. Энтропия как неопределённость. Аксиоматический подход к определению энтропии. Принцип максимума энтропии. Подход статистической физики за пределами термодинамики.
В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
Мультфильм рассказывает об использовании идеи биологической эволюции в задачах искусственного интеллекта, истории эволюционных алгоритмов и принципах их работы. Все это подробно изучается на магистерской программе Университета Иннополис «Робототехника». Историю об эволюционных алгоритмах нам помог рассказать доцент, руководитель Лаборатории искусственного интеллекта в разработке игр Университета Иннополис Джозеф Браун.
На чем основаны генетические алгоритмы? Как происходит создание различных уровней в компьютерной игре? Каковы перспективы применения эволюционных алгоритмов? На эти и другие вопросы отвечает доцент Университета Иннополис Джозеф Браун. Процедурная генерация контента в играх — это процесс автоматического создания различных ресурсов. Таким образом можно создавать повествование или сюжет игры или более простые объекты, такие как деревья. Или какие-нибудь элементы игрового процесса. Например, какие будут уровни. Этим я в основном и занимаюсь: как создать уровень, который отвечает некоторым ожиданиям игрока и некоторым ожиданиям в контексте повествования. Я использую много приемов из области, которая называется вычислительный интеллект. А вычислительный интеллект применяет биоинспирированные методы для решения сложных задач оптимизации.
Теория сложности вычислений — бурно развивающаяся область теоретической информатики (theoretical computer science) и охватывает как чисто теоретические вопросы, так и вопросы, непосредственно связанные с практикой. Среди наиболее важных приложений этой теории можно назвать способы построения и анализа эффективных алгоритмов, а также современные криптографические методы. Поэтому знакомство с основами теории сложности, безусловно, полезно любому, кто собирается серьезно заниматься практическим программированием или теоретическими исследованиями.
В 1958 году в Докладах Академии Наук вышла заметка А. Н. Колмогорова об энтропии как новом инварианте преобразований, сохраняющих меру. Вместе с двумя более ранними заметками, в которых заложены основы того, что потом было названо КАМ-теорией, эти работы полностью изменили облик и место в математике теории динамических систем. Это открытие привело серьезному прогрессу в нескольких областях математики, однако, как ни странно, некоторые идеи, близко лежащие к колмогоровским, не были развиты и даже замечены. Энтропия является одним из целой серии инвариантов, которые возникают при рассмотрении динамики метрических пространств с мерой. Изучение динамики метрик полезно и в других вопросах комбинаторики и теории случайных процессов.
Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
Какова история создания машины Тьюринга? Как она повлияла на развитие идей, лежащих в основе ряда современных технологий? Какие проблемы существуют в теории вычислительной сложности? И как математика рассматривает понятие случайность? Об идее универсальной машины, проблеме перебора и случайности рассказывает кандидат физико-математических наук Александр Шень.
Игры и смешанные стратегии. Задача о покупке акций на рынке ценных бумаг. Увеличение гарантированного выигрыша за счёт приобретения убыточных акций. Равновесие по Нэшу как индивидуально разумное решение игры. Почему реальные системы часто «сидят» в таком равновесии. Рыночная модель. Дилемма заключённого. Игровые ситуации, где в первую очередь играет роль психология.
Выпуклость и неравенства. Неравенство Иенсена. Метод математической индукции. Среднее арифметическое больше среднего геометрического. Приёмы доказательств. Использование производных. О монгольском неравенстве. Метод интервалов. Неравенство с логарифмами.