Какова история создания машины Тьюринга? Как она повлияла на развитие идей, лежащих в основе ряда современных технологий? Какие проблемы существуют в теории вычислительной сложности? И как математика рассматривает понятие случайность? Об идее универсальной машины, проблеме перебора и случайности рассказывает кандидат физико-математических наук Александр Шень.
Александр Шень — кандидат физико-математических наук, старший научный сотрудник Института проблем передачи информации РАН (Москва), научный сотрудник LIRMM CNRS (Франция, Монпелье). ПостНаука
Природа статистических законов вызывала споры с самого рождения теории вероятностей и продолжает их вызывать. Эти философские споры привели к рождению интересной математической теории: алгоритмической теории вероятностей и информации, которая — в отличие от классической — пытается дать определение индивидуального случайного объекта. Мы обсудим основные понятия этой теории и их связь с основаниями и парадоксами теории вероятностей. Об этом в публичной лекции математика Александра Шеня, кандидата физико-математических наук, старшего научный сотрудник Лаборатории теории передачи информации и управления ИППИ РАН.
Сколько нужно вопросов (с ответом “да” и “нет”), чтобы заведомо отгадать задуманное число от 1 до 1000? Можно ли обойтись меньшим числом вопросов? Если нет, то как это доказать? Сколько нужно взвешиваний на чашечных весах без гирь, чтобы наверняка выделить более лёгкую монету среди 1000 одинаковых на вид? С такого рода вопросов начинается наука о сложности алгоритмов, и очень скоро доходит до важных, но до сих пор не решённых задач.
В принципе, у троичной системы счисления было не меньше шансов, чем у двоичной. Кто знает, по какому пути развития пошел бы технический прогресс, если бы «трайты» одержали победу над «байтами». Как выглядели бы современные смартфоны или GPS-навигаторы, как отразилось бы значение «может быть» на их быстродействии?
План лекций: Доказуемость и недоказуемость (почему некоторые утверждения нельзя ни доказать, ни опровергнуть?); Вычислимые функции (почему некоторые функции нельзя вычислить на компьютере?); Сложность алгоритмов; Формальные языки и исчисления.
Составленная из нулей и единиц цепочка 100010111011110100000111 выглядит более случайной, чем цепочка 010101010101010101010101. Возможно ли разделить все цепочки нулей и единиц на случайный и не случайные? Для конечных цепочек эта задача вряд ли осуществима. Однако можно пытаться решать её для бесконечных цепочек, т.е. для последовательностей. Иными словами, можно пытаться найти строгое математическое определение для понятия «случайная последовательностей нулей и единиц».
В 1958 году в Докладах Академии Наук вышла заметка А. Н. Колмогорова об энтропии как новом инварианте преобразований, сохраняющих меру. Вместе с двумя более ранними заметками, в которых заложены основы того, что потом было названо КАМ-теорией, эти работы полностью изменили облик и место в математике теории динамических систем. Это открытие привело серьезному прогрессу в нескольких областях математики, однако, как ни странно, некоторые идеи, близко лежащие к колмогоровским, не были развиты и даже замечены. Энтропия является одним из целой серии инвариантов, которые возникают при рассмотрении динамики метрических пространств с мерой. Изучение динамики метрик полезно и в других вопросах комбинаторики и теории случайных процессов.
На чем основаны генетические алгоритмы? Как происходит создание различных уровней в компьютерной игре? Каковы перспективы применения эволюционных алгоритмов? На эти и другие вопросы отвечает доцент Университета Иннополис Джозеф Браун. Процедурная генерация контента в играх — это процесс автоматического создания различных ресурсов. Таким образом можно создавать повествование или сюжет игры или более простые объекты, такие как деревья. Или какие-нибудь элементы игрового процесса. Например, какие будут уровни. Этим я в основном и занимаюсь: как создать уровень, который отвечает некоторым ожиданиям игрока и некоторым ожиданиям в контексте повествования. Я использую много приемов из области, которая называется вычислительный интеллект. А вычислительный интеллект применяет биоинспирированные методы для решения сложных задач оптимизации.
Мультфильм рассказывает об использовании идеи биологической эволюции в задачах искусственного интеллекта, истории эволюционных алгоритмов и принципах их работы. Все это подробно изучается на магистерской программе Университета Иннополис «Робототехника». Историю об эволюционных алгоритмах нам помог рассказать доцент, руководитель Лаборатории искусственного интеллекта в разработке игр Университета Иннополис Джозеф Браун.
Системы искусственного интеллекта, которые могут играть в абстрактные, стратегические и настольные игры, прошли огромный путь, однако как на самом деле устроены их «мозги»?
Теория сложности вычислений — бурно развивающаяся область теоретической информатики (theoretical computer science) и охватывает как чисто теоретические вопросы, так и вопросы, непосредственно связанные с практикой. Среди наиболее важных приложений этой теории можно назвать способы построения и анализа эффективных алгоритмов, а также современные криптографические методы. Поэтому знакомство с основами теории сложности, безусловно, полезно любому, кто собирается серьезно заниматься практическим программированием или теоретическими исследованиями.