Элементы теории алгоритмов
План лекций:
Доказуемость и недоказуемость (почему некоторые утверждения нельзя ни доказать, ни опровергнуть?);
Вычислимые функции (почему некоторые функции нельзя вычислить на компьютере?);
Сложность алгоритмов;
Формальные языки и исчисления.
Шень Александр Ханиевич, кандидат физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-23 июля 2004 г.
Похожее
-
Александр Шень
Сколько нужно вопросов (с ответом “да” и “нет”), чтобы заведомо отгадать задуманное число от 1 до 1000? Можно ли обойтись меньшим числом вопросов? Если нет, то как это доказать? Сколько нужно взвешиваний на чашечных весах без гирь, чтобы наверняка выделить более лёгкую монету среди 1000 одинаковых на вид? С такого рода вопросов начинается наука о сложности алгоритмов, и очень скоро доходит до важных, но до сих пор не решённых задач.
-
Александр Шень
Какова история создания машины Тьюринга? Как она повлияла на развитие идей, лежащих в основе ряда современных технологий? Какие проблемы существуют в теории вычислительной сложности? И как математика рассматривает понятие случайность? Об идее универсальной машины, проблеме перебора и случайности рассказывает кандидат физико-математических наук Александр Шень.
-
Алексей Семёнов
«Качественная» теория алгоритмов (не касающаяся понятия сложности вычислений) может быть построена на интуитивном представлении о том, что такое алгоритм. Такого представления, при некотором его уточнении, оказывается достаточно для того, чтобы доказать первые базовые теоремы теории алгоритмов. В лекции будет приведено указанное уточнение, определено понятие вычислимости и понятие породимости («выводимости в формальной системе»), доказано несколько теорем, другие теоремы — предложены в качестве задач. Будут приведены и примеры т.н. «уточнения понятия алгоритма». Для понимания лекции желательно умение читать по-русски, знание латинского алфавита и представление о натуральном ряде.
-
Владимир Успенский
Целые числа, рациональные, алгебраические… Что дальше (оставаясь в пределах действительных чисел)? Дальше идут вычислимые действительные числа, т.е. такие действительные числа, которые можно в разумном смысле вычислить. «Можно вычислить» означает, что вычисление можно запрограммировать. Мыслимы различные подходы к тому, что именно надо программировать.
-
Алексей Сосинский
Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
-
Михаил Раскин
Вероника сидит в комнате. На улице дождь. Вероника ставит ТеХ и смотрит фехтование. Ей многое интересно. Когда закончится дождь? Не повисла ли установка ТеХа? Будет ли следующая атака по корпусу или по маске? Конечно, чтобы узнать ответ наверняка, Веронике придётся подождать. Двое физиков порождают случайный шум. Один ищет радиочастоту, где сигнал не портит помехи, его соседка водит счётчиком Гейгера. Есть много ситуаций, когда знание, происходящего не позволяет нам предсказывать дальнейшее. Я постараюсь объяснить, откуда (и как по-разному) они берутся.
-
Четыре тысячи лет назад жители Вавилонии изобрели умножение. А в марте этого года математики усовершенствовали его. 18 марта 2019 два исследователя описали самый быстрый из известных методов перемножения двух очень больших чисел. Работа отмечает кульминацию давнишнего поиска наиболее эффективной процедуры выполнения одной из базовых операций математики. «Все думают, что метод умножения, который они учили в школе, наилучший, но на самом деле в этой области идут активные исследования», — говорит Йорис ван дер Хувен, математик из Французского национального центра научных исследований, один из соавторов работы.
-
Владимир Успенский
В отличие от метрической теории алгоритмов, дескриптивная теория не занимается измерением ресурсов (таких как время, объём памяти), затрачиваемых при применении алгоритма к его возможным исходным данным (в другой терминологии — к его входам). Её интересует лишь, возможен алгоритм для решения данной задачи или нет. Начальные понятия дескриптивной теории алгоритмов суть: конструктивный обьект, алгоритм, число шагов алгоритма, вычислимая функция, перечислимое множество, разрешимое множество, сводимость нумераций, главная вычислимая нумерация, вычислимая операция.
-
Александр Шень
Природа статистических законов вызывала споры с самого рождения теории вероятностей и продолжает их вызывать. Эти философские споры привели к рождению интересной математической теории: алгоритмической теории вероятностей и информации, которая — в отличие от классической — пытается дать определение индивидуального случайного объекта. Мы обсудим основные понятия этой теории и их связь с основаниями и парадоксами теории вероятностей. Об этом в публичной лекции математика Александра Шеня, кандидата физико-математических наук, старшего научный сотрудник Лаборатории теории передачи информации и управления ИППИ РАН.
-
Николай Адрианов
В этом курсе мы познакомимся с замечательной теорией NP-полных задач. Проблема (не)равенства классов P и NP — одна из «задач тысячелетия», за каждую из которых объявлен приз в миллион долларов. Мы разберемся в определении класса NP и научимся доказывать NP-полноту различных комбинаторных задач (классические теоремы Кука–Левина и Карпа). Особое внимание уделим задаче выполнимости булевых формул SAT. Мы поиграем с программами, решающими эту задачу, разберем какие алгоритмы они используют, как результатом их работы может быть доказательство, допускающее автоматическую проверку. Научимся сводить логические головоломки и математические задачи к SAT, поговорим о судоку, задачах теории Рамсея, недавнем продвижении в задаче о хроматическом числе плоскости и о «самом большом математическом доказательстве».
Далее >>>
|
|