Двумерные поверхности и конфигурационные пространства
Один из важнейших понятий механики и теоретической физики — понятие конфигурационного пространства механической системы — почему-то остается неизвестным не только школьникам, но и большинству студентов-математиков. В лекции рассмотрен очень простой, но весьма содержательный класс механических систем — плоские шарнирные механизмы с двумя степенями свободы. Мы обнаружим, что в «общем случае» их конфигурационные пространства суть двумерные поверхности, и постараемся понять — какие именно. (Здесь имеются окончательные результаты десятилетней давности Димы Звонкина.) Далее обсуждаются нерешенные математические задачи, связанные с шарнирными механизмами. (В том числе две гипотезы, а точнее — недоказанные теоремы, американского математика Билла Тёрстона.)
Лекции доступны всем студентам, а также школьникам, кроме тех, кто 1) настолько испорчен изучением математики, что не понимает простые наглядные понятия, которым не было дано формальное определение, и 2) при этом не знает, что такое топологическое пространство.
Сосинский Алексей Брониславович, кандидат физико-математических наук.
Летняя школа «Современная математика», г. Дубна
25-29 июля 2007 г.
Похожее
-
Гаянэ Панина
Вот три тесно связанные между собой задачи, которые мы будем обсуждать: Как распрямить плотницкую линейку? Можно ли нарисовать на сфере правильно раскрашенный граф? Верна ли старая гипотеза А. Д. Александрова о характеризации сферы? Попутно будет сформулировано много задач разного уровня сложности (именно исследовательских задач, а не упражнений!). Часть из них — для умеющих и любящих программировать. В курсе будет много картинок.
-
Алексей Сосинский
Лекция начнется с демонстрации недавно обнаруженной серии физических экспериментов с проволочном контуром, который моделирует узлы (т.е. гладкие замкнутые кривые в пространстве). Оказывается, что этот контур — очень умный: он во многих случаях умеет распутывать тривиальный узел в круглую окружность, выполнять т.н. движения Рейдемейстера, движения Маркова, фокус Уитни, и всегда минимизирует т.н. индекс Уитни. Во второй части лекции будет рассмотрен один из красивейших подходов к изучению математической теории узлов, основанный на использовании т.н. «энергии узлов».
-
Алексей Сосинский
В лекции будут обсуждаться примеры сингулярных (особых) мыльных пленок, натянутых на проволочные контуры сложной формы (узлы, каркас куба и тетраэдра, и др.) Будут проводится демонстрации соответствующих экспериментов с проволоками и мыльным растворам, и на экране будут показаны фотографии и компьютерная графика изображений результатов. Оказывается, что на пленках возникают только два тина особенностей — так называемые “тройные линии” и “шестикрылые бабочки”, удивительным образом совпадающие с особенностями “специальных спайнов” (играющих ключевую роль в работах С. Матвеева и его школы по классификации трехмерных многообразий). Цель лекции — привлечь внимание слушателей к созданию (пока еще не существующей) математической теории сингулярных минимальных поверхностей.
-
Алексей Белов
Известна олимпиадная задача: На плоском столе лежат монеты (выпуклые фигуры). Тогда одну из них можно стащить со стола, не задевая остальных. Долгое время математики пытались доказать пространственный аналог этого утверждения, пока не был построен контрпример! Возникла идея: в малом зерне часто нет трещины, трещина за границу зерна не вырастает, а трещины друг друга держат. Эта идея теоретически позволяет создавать композиты в которых не растут трещины, в частности, броню из керамики.
-
Александра Скрипченко
Математик Александра Скрипченко о биллиарде как динамической системе, рациональных углах и теореме Пуанкаре.
-
Николай Тюрин
Если представлять себе выдающиеся произведения научной литературы как горные маршруты, уводящие в небо, то наш небольшой курс — не более чем прогулка с видом на далекие белоснежные вершины. Мы собираемся просмотреть видимые начала одного из красивейших маршрутов, уводящего далеко за облака, к высоким перевалам и вершинам классической механики. Очень скоро вчерашние школьники сами выйдут на этот маршрут, а пока… давайте немного потренируемся.
-
Алексей Сосинский
В лекции будет сказано, что такое узлы (и их родственники — зацепления, косы, ленты), но вместо соответствующих теорий, будут рассказаны некоторые яркие «внешние» применения этих понятий, т. е. приложения к другим наукам. А именно: Индекс зацепления двух кривых и электромагнетизм; Перестройки по заузленным лентам и опровержения первоначального варианта его знаменитой гипотезы; Косы и оправдание существования позитрона (и вообще антимира); Заузленные ДНК; Простейшее зацепление и расслоение Хопфа.
-
Алексей Сосинский
В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
-
Алексей Сосинский
Будет рассказано, что такое математическая теория узлов и зачем нужны их инварианты. Задача (трехмерная) о классификации узлов будет сведена к чисто комбинаторной двумерной задаче с помощью изящного инструмента — операций Райдемайстера. Затем будет показано, как вычисляется знаменитый инвариант узлов — полином Александера–Конвея. Будет построен (со всеми доказательствами) еще более знаментый инвариант узлов — полином Джонса, за который в 1992 году австралийский математик Воан Джонс получил медаль Фильдса. Это будет сделано с помощью т.н. скобки Кауфмана, т.е. с помощью соображений, тесно связанных со статистической физикой. Мы научимся вычислять этот полином и докажем ряд его свойств.
-
Алексей Сосинский
Курс занятий посвящен тому, что в математике сделать нельзя. Но речь пойдет не о запрещенных действиях (типа деления на ноль или квадратуры круга), а об отсутствии общих методов для решения некоторых широких классов задач. Начиная от определения вычислимой функции (через машину Тюринга), мы узнаем про существование универсальной вычислимой функции, и как следствие – о существовании не вычислимых функций. Отсюда мы поймем, какие задачи никакой компьютер (даже сколь угодно мощный) решить не может в принципе. Затем мы определим «Колмогоровскую сложность» и изучим ряд ее «нехороших» свойств, именно, не вычислимость некоторых связанных с ней характеристик. Эти свойства сыграют решающую роль в доказательстве теоремы Гёделя о неполноте – одного из самых значительных научных открытий ХХ-го века.
Далее >>>
|
|