Теневое исчисление
Аннотация:
Бином Ньютона
(здесь это биномиальный коэффициент, обозначаемый также через ) можно интерпретировать как свойство последовательности степеней Оказывается, эта последовательность — не единственная последовательность с таким свойством. Например, если мы рассмотрим последовательность многочленов
(«нисходящие факториалы»), то для нее также
(проверьте!). Такие последовательности многочленов называются биномиальными, их много, и многие из них оказываются очень интересными. Долгое время наличие у биномиальных последовательностей многочисленных общих свойств воспринималось как нечто таинственное и необъяснимое, почему их изучение и было названо umbral calculus, т.е. теневое исчисление. Работы Рота в 60-х годах прошлого века сорвали с теневого исчисления покров тайны, однако не уменьшили интерес к биномиальным последовательностям, поскольку они регулярно возникают в самых разных областях математики. На занятиях мы обсудим, как выписывать все биномиальные последовательности и какие у них свойства. Все необходимые для этого выходящие за рамки школьной (а изредка и университетской) программы сведения будут сообщены.
Материалы к лекции: [pdf 364 KB]
Ландо Сергей Константинович, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-21 июля 2008 г.
Похожее
-
Сергей Ландо
Числа Гурвица были введены А. Гурвицем в конце 19 века. Они перечисляют разветвленные накрытия двумерных поверхностей и имеют множество других проявлений — перечисляют разнообразные классы графов, являются коэффициентами связи в симметрических группах, представляют собой инварианты Громова–Виттена комплексных кривых.
-
Проскуряков И. В.
Целью этой книги является строгое определение чисел, многочленов и алгебраических дробей и обоснование их свойств, уже известных из школы, а не ознакомление читателя с новыми свойствами. Поэтому читатель не найдет здесь новых для него фактов (за исключением, быть может, некоторых свойств, действительных и комплексных чисел), но узнает, как доказываются вещи, хорошо ему известные, начиная с «дважды два — четыре» и кончая правилами действий с многочленами и алгебраическими дробями. Зато читатель познакомится с рядом общих понятий, играющих в алгебре основную роль.
-
Александр Гайфуллин
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.
-
Алексей Белов
Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
-
Алексей Белов
Произведение элементов пишут в виде слова, изображаемого отрезком. А что значит умножить элементы по кругу? Какой смысл имеет мозаика, составленная из таких кругов? Понимание такого рода вещей приводит к решению ряда открытых вопросов. Например, допустим мы хотим задать конечным числом соотношений полугруппу в которой степень любого элемента равна нулю. Конечным числом запрещенных подслов на прямой нельзя добиться того, чтобы были сколь угодно длинные слова без запрещенных подслов и в то же время не было таких периодических слов. В то же время на плоскости существуют конечные системы запретов допускающие только апериодические замощения. Но как умножать с разных сторон? Эти и другие вопросы предполагается обсудить.
-
Алексей Белов
Рассмотрим s-порожденную группу (s<1) с тождеством x^n=1. Будет ли она конечна? Ответ положителен при n=2 (легкое упражнение), при n=3 (это уровень сложной задачи студенческой олимпиады), при n=4 (проблема стояла около 40 лет) при n=6 (проблема стояла около 50 лет). При n=5 ничего не известно! В середине 20 века П. С. Новиковым и С. И. Адяном было показано, что если n нечетное число ≥661 то такая группа может быть бесконечна. А. И. Мальцев рассматривал этот результат как основное событие алгебры 20 века (эту точку зрения разделяет, в частности, И. Рипс, чьи исследования были вдохновлены работами П. С. Новикова-С. И. Адяна). Недавно С. И. Адян улучшил оценку до 101.
-
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
-
Иван Аржанцев
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
-
Владимир Арнольд
Ж. Л. Лагранж доказал, что последовательность неполных частных (начиная с некоторого места) периодична, если и только если число x — квадратичная иррациональность. Р. О. Кузьмин доказал, что в последовательности неполных частных почти любого вещественного числа доля d_m равных m неполных частных одинакова (для типичных вещественных чисел). Доля d_m убывает при m→∞ как 1/m^2 и её величина была предсказана Гауссом (ничего не доказавшим). В. И. Арнольда высказал (лет 20 назад) гипотезу, что статистика Гаусса–Кузьмина d_m выполняется также для периодов цепных дробей корней квадратных уравнений x^2+px+q=0 (с целыми p и q): если выписать вместе неполные частные, составляющие периоды всех цепных дробей корней таких уравнений с p^2+q^2≤R^2, то доля неполного частного m среди них будет стремиться к числу d_m при R→∞. В. А. Быковский со своими хабаровскими учениками доказали недавно эту давнюю гипотезу. Несмотря на это, вопрос о статистике не букв, а составленных из них слов [a_k+1, a_k+2,…, a_k+T], которые являются периодами цепных дробей каких-либо корней x уравнений x^2+px+q=0 далеко не решён.
-
Сергей Ландо
Что такое каустики, знает всякий, кто когда-либо выжигал по дереву, собирая солнечные лучи с помощью линзы, видел световые блики на дне неглубокого водоема от ряби на поверхности воды или наблюдал игру света, отражающегося от дна чашки. Латинское слово «каустик» означает «жгучий», и им называют множество тех точек в пространстве, в которых собирается больше лучей какого-либо светового потока, чем в соседних точках. Скажем, каустика равномерно излучающей сферы это ее центр — в него приходят все лучи. Однако если сферу немного возмутить — сжать в одном направлении и растянуть в другом, то каустика превращается из точки в очень интересную поверхность, о которой, в основном, и пойдет речь.
Далее >>>
|
|