Проблема Бернсайда и каноническая форма s-порожденной группы
Рассмотрим s-порожденную группу (s<1) с тождеством x^n=1. Будет ли она конечна? Ответ положителен при n=2 (легкое упражнение), при n=3 (это уровень сложной задачи студенческой олимпиады), при n=4 (проблема стояла около 40 лет) при n=6 (проблема стояла около 50 лет). При n=5 ничего не известно!
В середине 20 века П. С. Новиковым и С. И. Адяном было показано, что если n нечетное число ≥661 то такая группа может быть бесконечна. А. И. Мальцев рассматривал этот результат как основное событие алгебры 20 века (эту точку зрения разделяет, в частности, И. Рипс, чьи исследования были вдохновлены работами П. С. Новикова-С. И. Адяна). Недавно С. И. Адян улучшил оценку до 101.
Мы постараемся рассказать о канонической форме в этих группах, введенной Рипсом и, возможно, рассказать о доказательстве теоремы Новикова-Адяна (опустив оценки). Отметим, что перенос техники на группы с неположительной кривизной (энгелевы группы) позволил найти подход к построению геометрической теории колец.
Белов Алексей Яковлевич, доктор физико-математических наук.
Летняя школа «Современная математика», г. Дубна
20-23 июля 2016 г.
Похожее
-
Алексей Белов
Произведение элементов пишут в виде слова, изображаемого отрезком. А что значит умножить элементы по кругу? Какой смысл имеет мозаика, составленная из таких кругов? Понимание такого рода вещей приводит к решению ряда открытых вопросов. Например, допустим мы хотим задать конечным числом соотношений полугруппу в которой степень любого элемента равна нулю. Конечным числом запрещенных подслов на прямой нельзя добиться того, чтобы были сколь угодно длинные слова без запрещенных подслов и в то же время не было таких периодических слов. В то же время на плоскости существуют конечные системы запретов допускающие только апериодические замощения. Но как умножать с разных сторон? Эти и другие вопросы предполагается обсудить.
-
Алексей Белов
Планируется рассказать про свойства символьных последовательностей, и замечательные теоремы с ними связанные и их обобщения. Например, известно, что следующие классы слов почти эквивалентны: буквы a, b самым тщательным образом перемешаны, т.е. в кусках одинаковой длинны количество символов каждого сорта отличается не более чем на 1; количество различных подслов длины n равно n+1, т.е. минимально возможное; слово получается из поворота окружности на величину α при фиксации буквой a попадания на дугу длины α. Обобщение этой теоремы дает задача Арнольда о перекладывания отрезков. Красивые элементарные факты о поведении слов в которые добавляется не слишком много запретов, отражаются на теореме Голода–Шафаревича. Наверное, стоит упомянуть также теорему Ширшова о высоте.
-
Антон Джамай
Целью этого элементарного курса, рассчитанного на школьников, является познакомить слушателей с некоторыми основными и очень красивыми идеями современной абстрактной алгебры. Начиная с элементарных примеров, мы введем понятия группы, кольца, и поля, и заодно посмотрим на некоторые неожиданные свойства простых уравнений в кольцах. После этого мы рассмотрим разные примеры групп, таких как группы симметрий правильных многоугольников и многогранников, или группы перестановок. Мы увидим как можно записать операцию в группе с помощью таблиц Кэли, и посмотрим на более наглядное представление структуры группы с помощью диаграмм Кэли. Мы также рассмотрим примеры действия групп и связанные с этим понятия, а также некоторые красивые приложения (такие как счетная лемма Бернсайда).
-
Алексей Белов, Иван Митрофанов
В этом курсе будет рассказано о подстановочных системах довольно общего вида и о связанных с ними геометрических конструкциях, называемых фракталами Рози. Например, слово Трибоначчи 121312112131… состоит из цифр {1,2,3} и получается с помощью подстановки 1→12, 2→13, 3→1. Оказывается, что оно в некотором смысле устроено так же, как двумерный тор, разбитый на три части с фрактальной границей. (В то, что на первом рисунке изображена развёртка тора, трудно поверить, но тем не менее это так, и вторая картинка это иллюстрирует).
-
Из всех теорем Игоря Шафаревича мы выбрали одну, точнее, даже не теорему, а следствие из нее, мимоходом закрывшее изящный вопрос из теории групп, сформулированный за 60 лет до этого, — оно отрицательно решило общую проблему Бернсайда. Это красивая история, в которой Шафаревич появляется как известный актер в камео — с короткой и яркой репликой.
-
Алексей Белов
Общая постановка такова. Пусть P(x_1,…,x_n) — некоммутативный многочлен от матриц порядка n. Каким может быть множество его значений? И. Капланский и И. В. Львов поставили вопрос о том, что множество значений полилинейного многочлена есть векторное пространство (в этом случае оно совпадает либо с нулем, либо с пространством всех матриц, либо с пространством бесследовых матриц, либо со скалярными матрицами). Решение проблемы Капланского для матриц второго порядка над квадратично замкнутым полем оказалось весьма нетривиальным и глубоким. Вопросы, связанные с уравнениями в матрицах, помимо прикладного значения имеют отношение к конструкции алгебраически замкнутого тела, к теореме о свободе: если добавить новую некоммутативную переменную и соотношение, где та участвует, то это не приведет к появлению новых соотношений. Имеется ряд глубоких проблем, относящихся к множеству значений слов в группе — в частности, в матрицах второго порядка.
-
Александр Гайфуллин
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.
-
Сергей Ландо
Долгое время наличие у биномиальных последовательностей многочисленных общих свойств воспринималось как нечто таинственное и необъяснимое, почему их изучение и было названо umbral calculus, т.е. теневое исчисление. Работы Рота в 60-х годах прошлого века сорвали с теневого исчисления покров тайны, однако не уменьшили интерес к биномиальным последовательностям, поскольку они регулярно возникают в самых разных областях математики. На занятиях мы обсудим, как выписывать все биномиальные последовательности и какие у них свойства. Все необходимые для этого выходящие за рамки школьной (а изредка и университетской) программы сведения будут сообщены.
-
Сколькими способами можно раскрасить грани кубика, если есть три краски? Два варианта раскраски считаются разными, если один нельзя получить из другого переворачиваниями кубика. Грань красится целиком в один цвет. Описанная выше ситуация довольно типична, и потому нам бы хотелось найти какой-нибудь метод, который позволил бы сводить подобные вопросы к не слишком громоздкому перебору. Удивительным образом, на помощь приходит теория групп и так называемая формула Бернсайда.
-
Иван Аржанцев
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
Далее >>>
|
|