Принцесса или тигр?
Смаллиан Р. Принцесса или тигр?: Пер. с англ. / Под ред. и с
предисл. Ю. И. Манина. — М.: Мир, 1985. — 221 с.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с
теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Рэймонд Смаллиан (Raymond Smullian) — американский математик, концертный пианист, выдающийся популяризатор логики, философ, фокусник-престидижитатор.
Скачать: [djvu 1,8 MB]
Текстовая версия содержит ошибки в формулах.
Содержание
Похожее
-
Смаллиан Рэймонд
В книге «Алиса в Стране Смекалки» кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок. Они доставят удовольствие всем любителям занимательной математики, а почитателям творчества Льюиса Кэрролла в особенности.
-
Гарднер Мартин
Математические фокусы - очень своеобразная форма демонстрации математических закономерностей. Этой скрытой математичностью и интересна книга Мартина Гарднера - сам автор не формулирует на языке математики закономерностей, лежащих в основе его экспериментов, ограничиваясь описанием действий показывающего, явных и тайных. Но читателю, знакомому с элементами школьной алгебры и геометрии, несомненно, доставит удовольствие самому восстановить по объяснениям автора соответствующую алгебраическую или геометрическую идею. Книга будет интересна многим читателям: юным участникам математических кружков, взрослым любителям математики, а может быть, тот или иной из описанных здесь экспериментов пробудит улыбку и у серьезного ученого в краткий момент отдыха от большой работы.
-
Стивен Рид
«Данное высказывание ложно» — это классический вариант формулировки парадокса лжеца. Если предположить, что высказывание истинно, значит, человек должен говорить правду, но он признается, что лжет. А если высказывание на самом деле ложно, то человек должен нас обмануть, но в конечном счете говорит правду. Возникает противоречие: высказывание не может одновременно являться истинным и ложным. Это закон бивалентности: есть всего два истинностных значения, и у каждого высказывания может быть только одно из них. Философ Стивен Рид о неклассической логике, парадоксе Карри и принципе modus ponens.
-
Морис Клайн
Что такое математика? Каковы ее происхождение и история? Чем занимаются математики сегодня и каков ныне статус науки, которая составляет предмет их интересов и профессиональной деятельности? Ответы на эти и многие другие вопросы читатель найдет в книге известного американского математика, профессора Нью-Йоркского университета Мориса Клайна. В этой работе автор в увлекательной и популярной манере описывает историю развития и становления современной математики от античности до наших дней, а также рассказывает о глубоких изменениях, которые претерпели взгляды человека на существо математической науки и ее роль в современном мире.
-
Грегори Чейтин
Из идей сложности и случайности, впервые высказанных Готфридом Лейбницем в его «Рассуждении о метафизике» (1686), и их подтверждения в современной теории информации следует, что невозможно создать «самую общую теорию всего» в математике.
-
Veritasium
Возможно ли доказать всё, что истинно? Поиски ответа на этот вопрос раскололи математическое сообщество, заставили нас пересмотреть своё представление о бесконечности, помогли выиграть Вторую мировую войну и создать устройство, на котором вы посмотрите это видео. Как именно, расскажет Дерек Маллер в новом видео от Veritasium.
-
Парадокс Монти Холла — одна из известных задач теории вероятностей, решение которой, на первый взгляд, противоречит здравому смыслу.
-
Питер Эткинз
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
-
Иванов Е. М.
Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом, а именно, полагают, что теорема Геделя указывает на некоторое принципиальное преимущество человеческого ума перед "умом" машинным - т.е. человек обладает способностью решать проблемы, принципиально неразрешимые для любых искусственных "интеллектуальных" систем (так называемые "алгоритмически неразрешимые" проблемы), причем ограниченность "искусственного ума" проистекает из его "формального" характера.
-
Алексей Сосинский
Теорема Гёделя, наряду с открытием теории относительности, квантовой механики и ДНК, обычно рассматривается как крупнейшее научное достижение ХХ века. Почему? В чем ее суть? Каково ее значение? Эти вопросы в своей лекции раскрывает Алексей Брониславович Сосинский, математик, профессор Независимого московского университета, офицер Ордена академических пальм Французской Республики, лауреат премии Правительства РФ в области образования 2012 года. В частности, были даны несколько разных ее формулировок, описаны три подхода к ее доказательству (Колмогорова, Чейтина и самого Гёделя), и объяснено ее значение для математики, физики, компьютерной науки и философии.
Далее >>>
|
|