Я постараюсь объяснить базисные проблемы и идеи гомологической алгебры и современную их интерпретацию с помощью производных категорий. Затем расскажу как надо думать об алгебраических многообразиях, чтобы применять методы гомологической алгебры и теории категорий к алгебраической геометрии. В качестве примера, объясню как можно описывать расслоения на проективных пространствах с помощью разбиений вещественного тора.
Бондал Алексей Игоревич — доктор физико-математических наук (2005).
Летняя школа «Современная математика» имени Виталия Арнольда, г. Дубна
27 июля 2018 г.
Алгебраическая геометрия — раздел математики, который объединяет алгебру и геометрию. Главным предметом изучения классической алгебраической геометрии, а также в широком смысле и современной алгебраической геометрии, являются множества решений систем алгебраических уравнений. Современная алгебраическая геометрия во многом основана на методах общей алгебры (особенно коммутативной) для решения задач, возникающих в геометрии.
У древних греков было две никак не связанных между собой науки — арифметика и геометрия. В новое время математики осознали, что геометрические методы можно применять к арифметике, и наоборот. Двадцатый век пошёл много дальше. Сегодня целые числа для нас — геометрический объект ничуть не в меньшей степени, чем окружность. Осознание этого проходит через алгебру и алгебраическую геометрию. На этом пути была доказана великая теорема Ферма, но до неё мы, скорее всего в этих лекциях не дойдем. А впереди маячит гипотеза Римана, до которой не дойдём точно…
В прошлом двадцатом веке случилось событие, равного по масштабу которого в математике не было за всю ее историю. 19-го сентября 1994 года была доказана теорема, сформулированная Пьером де Ферма (1601-1665) более 350-ти лет назад в 1637 году. Она известна также как «последняя теорема Ферма» или как «большая теорема Ферма», поскольку есть еще так называемая "малая теорема Ферма". Ее доказал 41-летний, до этого момента в математическом сообществе ничем особо непримечательный, и по математическим меркам уже немолодой, профессор Принстонского университета Эндрю Уайлс. Удивительно, что про это событие толком не знают не только наши обычные российские обыватели, но и многие интересующиеся наукой люди, включая даже немалое число ученых в России, так или иначе использующих математику.
Высшую математическую награду мира, Филдсовскую премию, вручают один раз в четыре года математику не старше 40 лет. Таково было предложение Джона Филдса, президента Математического конгресса в 1924 году. За всю историю математики лишь 8 обладателей этой премии были выходцами из России. Один из них — Андрей Окуньков.
Рассмотрим квадратичную форму Q от двух переменных с целыми коэффициентами и зададимся вопросом, какие значения она может принимать на целочисленной решетке. В частном случае стандартной евклидовой формы это классический вопрос о том, когда заданное натуральное число представляется как сумма двух квадратов, исследованный Гауссом. Около 20 лет назад английский математик Джон Конвей предложил геометрический подход к этому вопросу, используя плоское бинарное дерево. Получаемое описание называется топографом формы. В случае когда форма принимает как положительные, так и отрицательные значения, они разделяются бесконечным путем на этом дереве, называемым рекой Конвея. Я расскажу, как река Конвея связана с парусом Арнольда из геометрической теории цепных дробей на целочисленной решетке, восходящей к Клейну.
В математике полно странных числовых систем, о которых большинство людей никогда не слышало. Некоторые из них даже сложно будет представить. Но рациональные числа знакомы всем. Это числа для счёта предметов и дроби — все числа, известные нам с начальной школы. Но в математике иногда сложнее всего понять самые простые вещи. Они простые, как гладкая стена, без трещин и выступов, или других очевидных свойств, за которые можно было бы ухватиться. Выдающийся математик раскрыл подробности того, как его успехи в изучении тысячелетних математических вопросов связаны с концепциями, взятыми из физики
15 марта стало известно, что премию Абеля в 2016 году получит Эндрю Уайлз за доказательство гипотезы Таниямы-Симуры для полустабильных эллиптических кривых и следующее из этой гипотезы доказательство великой теоремы Ферма. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью». Вручение премии — прекрасный повод вспомнить несколько историй, связанных с теоремой Ферма.
В курсе будет рассказано о замечательной теории, созданной В. Воеводским. В частности, будут даны и мотивированы определения гомологий Суслина, мотивных гомологий и когомологий Воеводского. Будет дана конструкция его категории мотивов алгебраических многообразий. Все эти построения опираются на понятия «многозначных» отображений и пучков. Оба последние понятия будут введены, пояснены и снабжены примерами. От слушателей предполагается знание того, что такое поле, векторное пространство, абелева группа и умение работать с многочленами нескольких переменных.
Знакомая большинству из вас формула Лейбница утверждает, что (fg)′=f′g+fg′. А какие ещё операции обладают аналогичным свойством? Задавшись этим вопросом, естественно определить дифференцирование алгебры А как такое линейное отображение D из A в A, что D(fg)=D(f)g+fD(g) для любых f,g ∈ A. В этом курсе мы поговорим о дифференцированиях коммутативных алгебр, в первую очередь, алгебры многочленов от многих переменных. Хотелось бы описать все дифференцирования и изучить их свойства. Начала этой теории вполне элементарны. В то же время дифференцирования тесно связаны со сложными задачами алгебраической геометрии, теории групп преобразований и теории представлений.
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.