Кольца и многообразия
I leave the title and abstract as vague as possible, so that I can talk about whatever I feel like on the day. Many varieties of interest in the classification of varieties are obtained as Spec or Proj of a Gorenstein ring. In codimension ⩽3, the well known structure theory provides explicit methods of calculating with Gorenstein rings. In contrast, there is no useable structure theory for rings of codimension ⩾4. Nevertheless, in many cases, Gorenstein projection (and its inverse, Kustin–Miller unprojection) provide methods of attacking these rings. These methods apply to sporadic classes of canonical rings of regular algebraic surfaces, and to more systematic constructions of Q-Fano 3-folds, Sarkisov links between these, and the 3-folds flips of Type A of Mori theory.
For introductory tutorial material, see my website + surfaces + Graded rings and the associated homework.
For applications of Gorenstein unprojection, see “Graded rings and birational geometry” on my website + 3-folds, or the more recent paper.
Gavin Brown, Michael Kerber and Miles Reid, Fano 3-folds in codimension 4, Tom and Jerry (unprojection constructions of Q-Fano 3-folds), Composition to appear, arXiv: 1009.4313
Рид Майлс http://www.warwick.ac.uk/staff/Miles.Reid
Школа по алгебре и алгебраической геометрии, г. Екатеринбург.
18–20 августа 2011 г.
Похожее
-
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
-
Keith Conrad
И целые числа, и многочлены (от одной переменной с коэффициентами в Q, R или Z/pZ) можно делить с остатком. Эта и подобные аналогии в структуре целых чисел и многочленов играли и продолжают играть важную роль в математике, особенно в теории чисел. В этом курсе мы исследуем такие аналогии в контексте теории чисел: на примере непрерывных дробей, уравнения Пелля, квадратичных вычетов, и abc-гипотезы. От слушателей требуется знакомство с пределами и арифметикой вычетов.
-
Антон Джамай
Целью этого элементарного курса, рассчитанного на школьников, является познакомить слушателей с некоторыми основными и очень красивыми идеями современной абстрактной алгебры. Начиная с элементарных примеров, мы введем понятия группы, кольца, и поля, и заодно посмотрим на некоторые неожиданные свойства простых уравнений в кольцах. После этого мы рассмотрим разные примеры групп, таких как группы симметрий правильных многоугольников и многогранников, или группы перестановок. Мы увидим как можно записать операцию в группе с помощью таблиц Кэли, и посмотрим на более наглядное представление структуры группы с помощью диаграмм Кэли. Мы также рассмотрим примеры действия групп и связанные с этим понятия, а также некоторые красивые приложения (такие как счетная лемма Бернсайда).
-
Максим Казарян
Математик Максим Казарян о римановых пространствах, гауссовой кривизне и фробениусовых многообразиях.
-
Наталия Гончарук, Юрий Кудряшов
Грубо говоря, это гладкое отображение, которое растягивает в одних направлениях и сжимает в других. Про диффеоморфизмы Аносова было сформулировано много гипотез общего характера. Многие из них до сих пор открыты, несмотря на большой интерес, которых они вызывают. На первых двух занятиях мы обсудим различные свойства линейного отображения двумерного тора, заданного формулой (x, y) → (2x+y, x+y): устойчивое и неустойчивое направления, перемешивание, транзитивность, плотность периодических орбит. Кроме того, мы построим марковское разбиение, которое позволяет связать этот диффеоморфизм с цепью Маркова. На третьем занятии мы дадим общее определение диффеоморфизма Аносова и построим пример диффеоморфизма, действующий на более сложном многообразии. Последнее занятие будет посвящено открытым вопросам о диффеоморфизмах Аносова.
-
Георгий Шабат
Мы сейчас знаем о строении Вселенной примерно столько же, сколько древние люди знали о поверхности Земли. Точнее, мы знаем, что небольшая часть Вселенной, доступная нашим наблюдениям, устроена так же, как небольшая часть трёхмерного евклидова пространства. Иначе говоря, мы живём на трёхмерном многообразии (3-многообразии). Кругосветным путешествиям и построениям полных атласов может предшествовать априорная классификация маломерных многообразий — вопрос о том, где мы “на самом деле” живём заменяется на вопрос где мы могли бы жить? Эта классификация (требующая некоторых естественных ограничений на многообразия) тривиальна в размерности 1, допускает красивый полный ответ в размерности 2, полученный в XIX веке, и составляет исключительно трудную проблему в размерности 3. В этой проблеме совсем недавно достигнуты замечательные результаты, обзор которых и составляет цель курса.
-
Владимир Успенский
В курсе будет изложена история гипотезы Пуанкаре — с точными определениями и формулировками, но без полных доказательств. Будут объяснены понятия, необходимые для понимания различных версий (топологическая, гладкая, кусочно-линейная) гипотезы Пуанкаре: многообразие, гомотопическая эквивалентность, фундаментальная группа. Слушатели узнают о классификации двумерных компактных многообразий («сферы с ручками и пленками Мебиуса»), об экзотических гладкостях на сферах и на R^4 и о том, что одна из версий гипотезы Пуанкаре (гладкая 4-мерная) остается открытой. Мы обсудим также различные версии проблемы Шенфлиса: ограничивает ли вложенная (n–1)-мерная сфера в R^n вложенный n-мерный шар? Некоторые из этих версий остаются открытыми проблемами.
-
Шинтан Яу, Стив Надис
Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной. Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.
-
Алексей Савватеев
Вводный миникурс по алгебре, ориентированный на студентов-первокурсников, но всем остальным может быть интересно тоже.
-
Алексей Савватеев
В миникурсе ликвидируются пробелы школьного образования, относящиеся к теории групп и к конкретным примерам групп. Будут установлены базовые факты про вычеты, доказана малая теорема Ферма, исследованы подгруппы групп перестановок на трёх и четырёх символах, введено понятие нормальной подгруппы данной группы и простоты группы. Затем будет доказано, что группа чётных перестановок на n≥5 символах — простая (что откроет желающим дорогу к вопросам о разрешимости алгебраических уравнений в радикалах), а также что подгруппа переносов плоскости (пространства) — нормальная в группе всех (аффинных) движений соответствующего объекта. Маломерные группы движений получат полную характеризацию (теорема Шаля и законы композиции движений разных видов).
Далее >>>
|
|