x, y, z

Эмоциональный искусственный интеллект

Максим Таланов

Комментарии: 0

Когда эмоциональные вычисления сформировались как отдельное направление исследований? Можно ли перенести человеческие эмоции на вычислительные системы? Почему важно добиваться от роботов «эмоциональной отдачи»?

Машины, воспроизводящие мозг человека или животных, будут способны к самообучению

Последнее время все большее внимание ученых привлекает новое направление исследований — эмоциональные вычисления (Affective computing). Роль эмоций в эволюции естественного интеллекта велика, искусственный интеллект пока многое упускает в этом отношении, в нем невозможно воплотить многие явления, связанные с эмоциональной картиной, с эмоциональным состоянием человека. Ученым из области ИИ активно помогают когнитивные нейробиологи, психологи и философы. Нейробиологам удалось показать связь нейромодуляторов, принимающих активное участие в эмоциях человека, с принятием решений. Оказалось, что способность человека быстро принимать решения связана с тем, что информация в нашем мозгу эмоционально «расцвечена», мы часто принимаем решения просто под воздействием того или иного эмоционального импульса. Однако это совсем не так в современных вычислительных системах.

Не воплощая эмоциональные механизмы в ИИ, мы не используем возможности быстрого принятия решений. В результате роботизированные системы или системы искусственного интеллекта оказываются нежизнеспособными в условиях реального мира. При этом мы частично воплощаем в технике те или иные эмоциональные механизмы, но называем их по-другому, например, переключение внимания – приоритизацией и перераспределением вычислительных ресурсов.

Просто выходя на улицу, мы принимаем громадное количество решений: повернуть голову в сторону громкого звука или не поворачивать; переходить ли улицу или не переходить, если там едут автомобили? Эти решения принимаются сознательно и бессознательно, процессы носят эмоциональную окраску и вовлекают множество структур мозга. Как результат, эмоции (нейромодуляторы) сильно влияют на мыслительный процесс, другими словами, на вычислительные функции нейронов.

Было замечено, что в мозгу присутствуют так называемые контуры (Circuits). Например, основной таламо-кортикальный контур выглядит так: кора мозга влияет на подкортикальные структуры: таламус, полосатое тело и так далее вызывая положительную или отрицательную эмоциональную обратную связь, которая, в свою очередь, влияет на кору. Другими словами сознательные процессы влияют на неосознанные эмоциональные процессы, и эмоциональные процессы влияют на осознанные — мы постоянно находимся в эмоциональном цикле.

Марвин Мински (пионер в области ИИ и лауреат премии Тьюринга) заметил что эмоциональные циклы могут приводить к длительной «зацикленности». Он называет их «багом», то есть ошибкой: мы можем воспроизводить периодически то или иное эмоциональное состояние. Например, когда мы находимся в депрессии: неоднократно задаемся вопросом «Почему он так ужасно поступил со мной? Это совершенно несправедливо». Или, наоборот, мы воспроизводим эйфорическое состояние: если вы ездили на мотоцикле, то вы все время вспоминаете, как вам «классно» ездить на мотоцикле, просто потому, что вам это нравится. И в действительности вы уже не едете на мотоцикле, а просто вспоминаете это и находитесь в этом цикле.

В работе по интеграции эмоций в ИИ стоит выделить два направления, которые очень тесно связаны. Во-первых, определение эмоций человека по его лицу, жестикуляции и так далее (Affective computing). Это направление, которое очень интенсивно развивается в Соединенных Штатах под руководством Розалинд Пикард в MIT Media Lab. В 1997 году Пикард опубликовала свою книгу Affective Computing, послужившую отправной точкой исследований. В ее лаборатории проводятся интересные эксперименты: участники закрепляют камеры перед собой, с некой периодичностью снимают выражения лиц и одновременно собирают данные в динамике: проводимость кожи, пульс, давление и так далее, ассоциируя эмоциональную реакцию и показания нательных датчиков.

Другое направление, которым в том числе и мы занимаемся (лаборатория машинного понимания ИТИС КФУ), — Affective computation, это воспроизведение человеческих эмоций в вычислительных системах. У машин нет нейронов, нет нейромодуляторов, нет биохимии, есть только вычислительные процессы. Соответствие между вычислительными процессами и мыслительными далеко не линейно. Приходится создавать достаточно сложные теории, чтобы понять, из чего, в целом, собираются те или иные психологические феномены и как мы можем воспроизвести это в вычислительных системах.

Головной мозг человека потребляет примерно 20 Ватт, как лампочка. Последняя симуляция работы 1% головного мозга, проведенная в японском Институте RIKEN в 2013 году, потребовала 250 суперкомпьютеров. Это достаточно серьезный успех. Однако на борту каждого суперкомпьютера находилось 80 000 процессоров, которые потребляли гораздо больше чем 20 Ватт. И при этом симуляция примерно в тысячу раз медленнее реальной работы головного мозга. Пока эффективность явно не на стороне вычислительных систем. Это говорит о том, что нам нужна новая компьютерная архитектура. На ее создание нацелен проект BRAIN: правительство США выделяет $300 млн в год для воспроизведения человеческого мозга в виде микросхем и программного обеспечения.

На сегодняшний день создана нейробиологически инспирированная не-фон-Неймановская архитектура TrueNorth (фон-Неймановская — архитектура обычных компьютеров). Она закладывает основы для нового пути развития вычислительных систем: воссоздания нейронных сетей не с помощью программного обеспечения, а в виде микросхем, «железа». Новые микросхемы моделируют до миллиона нейронов. Специалисты из IBM пошли дальше: они уже создали материнскую плату, в которой собрали массив 4х4, всего 16 млн нейронов.

С одной стороны, это не так много, ибо количество нейронов в коре человеческого мозга от 19 млрд до 23 млрд, а общий объем — 86 млрд. С другой стороны, это уже интересные масштабы. Например, в коре головного мозга мыши — млекопитающего, у которого есть весь необходимый эмоциональный багаж, — только 4 млн нейронов.

Еще интереснее посмотреть на историческую перспективу: в 2011 году у той же IBM была микросхема, которая воспроизводила всего 256 нейронов. Таким образом, произошел скачок на три порядка. Если будет следующий скачок, то, мы сможем выйти на масштабы коры человеческого мозга. И тогда, возможно, появятся самообучающиеся системы сравнимые по мощности с человеческим мозгом.

Что дают самообучающиеся системы? Мы не программируем мышей, котят, мы не программируем детей. Потому что это не нужно. Такие вычислительные системы (искусственные агенты) не будут нуждаться в программировании в его нынешнем понимании. К ним нужно будет применять совершенно другие техники, известные педагогам детских садов и школ. Таким образом, мы подходим к концепции детства для агентов искусственного интеллекта, что открывает принципиально новые перспективы для развития ИИ.

Максим Таланов, кандидат технических наук, руководитель Лаборатории Машинного Понимания Казанского федерального университета, преподаватель Университета Иннополис
12.05.2015
forbes.ru
Комментарии: 0