Когнитивная психология с самого начала своей истории описывала человека как вычислительную машину. Иван расскажет о ключевых моментах развития этого пути исследования человека, к чему он привёл на сегодняшний день и как учёные моделируют такие таинственные и, как кажется, присущие только человеку процессы, как интуиция, предвидение, инсайт и уверенность.
Иван Иванчей, кандидат психологических наук, научный сотрудник СПбГУ. Область научных интересов: неосознаваемые процессы переработки информации, научение, сознание, вычислительное моделирование когнитивных процессов. Автор нескольких онлайн-курсов по анализу данных.
Лекция прошла на площадке Университета ИТМО при информационной поддержке медиагруппы "Мегабайт". Организаторы встречи: дискуссионный клуб "Щепотка Соли"
Некоторые специалисты, работающие в областях, не связанных с искусственным интеллектом, говорят, что компьютеры по своей природе не способны к сознательной умственной деятельности. Мы публикуем две статьи из журнала Scientific American. В статье Дж.Р.Сирла утверждается, что компьютерные программы никогда не смогут достичь разума в привычном для нас понимании. В то же время в другой статье, написанной П.М.Черчлендом и П. С.Черчленд приводится мнение, что с помощью электронных схем, построенных по образу и подобию мозговых структур, возможно удастся создать искусственный интеллект. За этим спором по существу скрывается вопрос о том, что такое мышление. Этот вопрос занимал умы людей на протяжении тысячелетий. Практическая работа с компьютерами, которые пока не могут мыслить, породила новый взгляд на этот вопрос и отвергла многие потенциальные ответы на него. Остается найти правильный ответ.
Как смоделировать мозг? Постижим ли человеческий мозг? Как алгоритмизировать сознание? И можно ли скопировать его на неорганический носитель? Ответы на эти вопросы помогает найти Виталий Дунин-Барковский, доктор физико-математических наук, профессор, заведующий отделом нейроинформатики Центра оптико-нейронных технологий НИИСИ РАН.
Почему за полвека усилий не удалось создать искусственный интеллект? И как киборги помогают понять работу мозга? Об этом рассказывает Михаил Бурцев, кандидат физико-математических наук, руководитель лаборатории нейронных систем и глубокого обучения МФТИ.
Речь в данной работе пойдет о так называемом "геделевском аргументе", который используется как аргумент против возможности создания искусственного интеллекта. Суть аргумента заключается в следующем: полагают, что из теоремы Геделя о неполноте формальных систем вытекает принципиальное различие между искусственным ("машинным") интеллектом и человеческим умом, а именно, полагают, что теорема Геделя указывает на некоторое принципиальное преимущество человеческого ума перед "умом" машинным - т.е. человек обладает способностью решать проблемы, принципиально неразрешимые для любых искусственных "интеллектуальных" систем (так называемые "алгоритмически неразрешимые" проблемы), причем ограниченность "искусственного ума" проистекает из его "формального" характера.
В наш век информационных технологий нейросети и автоматизация процессов занимает все больше и больше места. О принципах работы нейросети, как с ее помощью автоматизировать экономические процессы и о многом другом расскажет кандидат технических наук, доцент кафедры проектирования и производства электронно-вычислительных средств ПГТУ, Танрывердиев Илья Оруджевич.
Почему в процессе эволюции появляется кооперативное поведение? Как объясняют возникновение кооперации различные теории? И как исследование данного вопроса может отразиться на представлениях о морали человека? Об условиях возникновения кооперации, истоках человеческой морали и теории родственного отбора рассказывает специалист по эволюционной кибернетике Михаил Бурцев.
Когда эмоциональные вычисления сформировались как отдельное направление исследований? Можно ли перенести человеческие эмоции на вычислительные системы? Почему важно добиваться от роботов «эмоциональной отдачи»?
На лекции мы обсудим вторую весну искусственного интеллекта в цифрах и фактах, ключевые работы в области искусственного интеллекта и машинного обучения в 2017 году. Поговорим о распознавании изображений, речи, обработке естественного языка и о других направлениях исследований; обсудим новые модели и оборудование 2017 года. Также поговорим о применении ИИ и машинного обучения в бизнесе, медицине и науке, а также обсудим, чего мы ждем от искусственного интеллекта и машинного обучения в 2018 году.
Что такое машинное обучение? И можно ли считать, что программа, натренированная решать ту или иную задачу, понимает, что она делает? О том, как компьютер развивает интуицию и учится фильтровать спам, распознавать изображения и играть в игры, в новом материале «Чердака» рассказывает Иван Ерофеев.