Сила взаимодействия между двумя точечными электрическими зарядами пропорциональна величинам этих зарядов и обратно пропорциональна квадрату расстояния между ними.
Явление электростатического притяжения еще до нашей эры было известно древнегреческим ученым. Они знали, например, что если потереть янтарь кошачьей шерстью, а стекло шелком, то между ними возникают силы притяжения. Кроме того, им было известно, что при помощи таких предметов можно заставить воздействовать друг на друга и другие предметы: например, если прикоснуться наэлектризованным янтарем к пробковой крошке, она будет отталкиваться от других пробковых крошек, к которым прикасались янтарем, и притягиваться к крошкам, к которым прикасались стеклом. Сегодня мы знаем, что подобное притяжение и отталкивание является проявлением статического электричества. Мы наблюдаем электростатические явления и в повседневной жизни, когда, например, нам приходится буквально отлеплять одну от другой свежевыстиранные и доставаемые из сушилки вещи или когда мы никак не можем привести в порядок наэлектризованные и буквально встающие дыбом волосы.
Электростатика в современном понимании начинается с осознания того, что подобное поведение (притяжение или отталкивание), наблюдавшееся еще древними греками, является следствием существования в природе двух видов электрических зарядов — положительных и отрицательных. В атоме они разделены. Положительные заряды сосредоточены в атомном ядре — их носителями являются протоны, а электроны, являющиеся носителями отрицательных зарядов, расположены вокруг ядра. Первым идею о том, что в природе существует только два типа электрических зарядов, и только они ответственны за все наблюдаемые нами электростатические явления, подобные вышеописанным, высказал американский государственный деятель и ученый Бенджамин Франклин (Benjamin Franklin, 1706–1790). Выражаясь современным языком, его рассуждения сводились к тому, что если удалить часть отрицательно заряженных электронов из вещества, оно останется положительно заряженным, поскольку в нормальном состоянии именно отрицательный заряд электронов компенсирует положительный заряд ядер. Если же к веществу в нормальном состоянии добавить дополнительные электроны, оно приобретет отрицательный заряд.
Зная о существовании электричества на протяжении тысяч лет, человек приступил к его научному изучению лишь в XVIII веке. (Интересно, что сами ученые той эпохи, занявшиеся этой проблемой, выделяли электричество в отдельную от физики науку, а себя именовали «электриками».) Одним из ведущих первоисследователей электричества явился Шарль Огюстен де Кулон. Тщательно исследовав силы взаимодействия между телами, несущими на себе различные электростатические заряды, он и сформулировал закон, носящий теперь его имя. В основном свои эксперименты он проводил следующим образом: различные электростатические заряды передавались двум маленьким шарикам, подвешенным на тончайших нитях, после чего подвесы с шариками сближались. При достаточном сближении шарики начинали притягиваться друг к другу (при противоположной полярности электрических зарядов) или отталкиваться (в случае однополярных зарядов). В результате нити отклонялись от вертикали на достаточно большой угол, при котором силы электростатического притяжения или отталкивания уравновешивались силами земного притяжения. Замерив угол отклонения и зная массу шариков и длину подвесов, Кулон рассчитал силы электростатического взаимодействия на различном удалении шариков друг от друга и на основе этих данных вывел эмпирическую формулу:
где
и
—величины электростатических зарядов,
— расстояние между ними, а
— экспериментально определяемая постоянная Кулона.
Сразу отметим два интересных момента в законе Кулона. Во-первых, по своей математической форме он повторяет закон всемирного тяготения Ньютона, если заменить в последнем массы на заряды, а постоянную Ньютона, на постоянную Кулона. И для этого сходства есть все причины. Согласно современной квантовой теории поля и электрические, и гравитационные поля возникают, когда физические тела обмениваются между собой лишенными массы покоя элементарными частицами-энергоносителями — фотонами или гравитонами соответственно. Таким образом, несмотря на кажущееся различие в природе гравитации и электричества, у двух этих сил много общего.
Второе важное замечание касается постоянной Кулона. Когда шотландский физик-теоретик Джеймс Кларк Максвелл вывел систему уравнений Максвелла для общего описания электромагнитных полей, выяснилось, что постоянная Кулона напрямую связана со скоростью света с. Наконец, Альберт Эйнштейн показал, что с играет роль фундаментальной мировой константы в рамках теории относительности. Таким образом можно проследить, как самые абстрактные и универсальные теории современной науки поэтапно развивались, впитывая в себя ранее полученные результаты, начиная с простых выводов, сделанных на основе настольных физических опытов.
Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил — профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.