Вступление / Математика. Поиск истины
<<< | 1| 2| 3| 4| 5| 6| 7|…| 19| >>>
Вступление
Как мы познаем окружающий нас реальный мир? Всем нам приходится полагаться на свидетельства наших органов чувств — слуха, зрения, осязания, вкуса, обоняния, — когда мы решаем повседневные проблемы или получаем от чего-то удовольствие. Чувственные восприятия многое говорят нам о реальном мире, но в основном наши органы чувств слишком грубы. Декарт (быть может, с излишней резкостью) назвал ощущения обманом наших чувств. Правда, такие приборы и инструменты для научных исследований, как, например, телескоп, существенно расширяют границы доступного нашему чувственному восприятию, но лишь в определенных пределах.
Многие явления окружающего нас реального мира вообще скрыты от наших органов чувств. Они ничего не говорят нам, о том, что Земля вращается вокруг своей оси и обращается вокруг Солнца. Они умалчивают о природе силы, удерживающей планеты на их орбитах, об электромагнитных волнах, позволяющих нам принимать радио- и телепередачи за сотни и тысячи километров от передающей станции.
Эта книга повествует в основном не о том, что можно было бы назвать «земными» приложениями математики, например о точном определении высоты 50-этажного дома. Читатель сможет почерпнуть кое-какие сведения об ограниченных возможностях наших органов чувств, но главное внимание здесь уделено описанию того, что мы узнаем о реальностях окружающего мира посредством одной лишь математики. Не вдаваясь в изложение идей и методов самой математики, я постараюсь рассказать о том, какие черты основных явлений современного мира мы постигаем с ее помощью. Разумеется, опыт и экспериментирование играют определенную роль в нашем исследовании природы, но, как станет ясно из дальнейшего, во многих областях знания их вклад незначителен.
В XVII в. Блез Паскаль горько сетовал на беспомощность человека. Ныне созданное нашими усилиями всемогущее оружие — математика — позволяет познавать многое в окружающем нас реальном мире и овладевать им. В 1900 г., обращаясь к участникам II Международного конгресса математиков, один из величайших представителей современной математической науки Давид Гильберт заявил: «Математика — основа всего точного естествознания» ([1], с. 69). С полным основанием можно добавить, что только математика позволила получить то знание о разнообразных жизненно важных явлениях, которыми мы ныне располагаем. Многие науки по существу представляют собой свод математических теорий, скупо приправленных физическими фактами.
Вопреки впечатлению, которое обычно складывается у тех, кому довелось прослушать курс математики в стенах учебного заведения, математика — это не просто набор более или менее хитроумных приемов для решения задач. Математика открывает нам немало такого, о чем мы не знали и даже не подозревали, хотя речь идет о явлениях весьма существенных, и нередко ее выводы противоречат нашему чувственному восприятию. Математика — суть нашего знания о реальном мире. Она не только выходит за пределы чувственного восприятия, но и оказывает на него воздействие.
Благодарности
Я глубоко признателен сотрудникам издательства «Оксфорд юниверсити пресс» за тщательную работу над книгой. Хочу также поблагодарить мою жену Элен и мисс Мэрилин Маневитц, внимательно вычитавших и перепечатавших рукопись этой книги.
М. Клайн.
Бруклин, Нью-Йорк, март 1985 г.
<<< | 1| 2| 3| 4| 5| 6| 7|…| 19| >>>
Похожее
-
Мэрилин вос Савант, рекордсмен мира по IQ — 228 пунктов, — не внесла ничего ни в науку, ни в искусство, а всего лишь ведет колонку вопросов и ответов в журнале Parade. Самые что ни на есть посредственные физики обладают гораздо более высоким коэффициентом интеллекта, чем лауреат Нобелевской премии Ричард Фейнман, которого многие считают последним величайшим американским гением (его IQ составлял «всего лишь» приличные 122 пункта). Исследователи давно пытаются установить взаимосвязь между интеллектом и гением, но интеллекта оказывается явно недостаточно. В издательстве МИФ вышла книга «Взлом креатива» американского эксперта по креативности Майкла Микалко с примерами из работ известных мыслителей и практическими упражнениями по поиску оригинальных идей. Публикуем некоторые главы.
-
Математик, руководитель Департамента математики факультета экономики ВШЭ о проблемах российского образования, предсказаниях биржи и качествах ученого
-
Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
-
Пифагорейцы утверждали, что числа правят миром, а Александр Суворов называл математику «гимнастикой ума». Сейчас интерес к этой науке постепенно возрождается. T&P поговорили с пятью известными математиками, чтобы разобраться, зачем формулы и уравнения нужны в повседневной жизни, почему математика — интересный и творческий предмет, и что теряет гуманитарий, отмахиваясь от этой науки.
-
В формате «Точка зрения» ПостНаука знакомит читателей с мнениями наших экспертов об актуальных проблемах общества, образования и науки. В новом выпуске мы попросили наших авторов высказать свою точку зрения по поводу основных проблем преподавания физики в школе.
-
Владимир Арнольд
Я собираюсь рассказать сегодня о довольно грустных обстоятельствах, связанных с положением математического образования во всем мире. Больше всего я знаю положение, естественно, в России, а также во Франции и в Соединенных Штатах. Но процессы, о которых я буду говорить, примерно одновременно идут во всем мире. Они несколько невероятны, но то, что я буду рассказывать, как бы это ни было невероятно, — чистая правда.
-
Салман Хан
На конференции Gel (Good Experience Live) Салман Хан рассуждает, что именно сделало его проект таким востребованным. Это и правда самый главный вопрос: чем его ролики лучше всего остального, что предлагает интернет? И что мы, в конце концов, видим — революцию в образовании или просто очень талантливого учителя?
-
Сергей Рукшин
О том, как строить работу с одаренными детьми, на каких принципах удается воспитывать столь одаренных математиков как Григорий Перельман, Станислав Смирнов и другие, мы побеседовали с Сергеем Рукшиным, заслуженным учителем РФ, канд. физ.-мат. наук, членом Общественного совета при Министерстве образования и науки, основателем и директором Санкт-Петербургского городского математического центра для одаренных школьников, доцентом РГПУ им. А.И. Герцена. Беседовала Наталия Демина.
-
Алексей Савватеев
Чем определяется успех на математических олимпиадах? Коррелируют ли олимпиадные успехи с будущими научными достижениями? Какие навыки необходимы для того, чтобы стать настоящим учёным? Рассказывает Алексей Савватеев, математик и матэкономист, доктор физико-математических наук, научный руководитель Кавказского Математического Центра АГУ, ректор Университета Дмитрия Пожарского, профессор МФТИ, научный руководитель ЦДПО РЭШ, ведущий научный сотрудник ЦЭМИ РАН, популяризатор математики среди детей и взрослых.
-
Сергей Ландо
Сергей Ландо, докт. физ.-мат. наук, профессор факультета математики Высшей школы экономики, стоял у истоков возникновения факультета математики и исполнял обязанности декана с момента создания факультета в 2007 году до весны 2015 года. Людмила Сапченко расспросила Сергея Константиновича о его научной деятельности, о том, какое место занимают математические науки в современном мире, как создавался факультет, какие задачи ставятся перед факультетом в настоящее время.
Далее >>>
|
|