Формула языка математической логики тогда становится истинной или ложной, когда она ассоциируется с некоторым множеством, называемым носителем интерпретации. Этот носитель служит прямым или косвенным источником для назначения значений встречающихся в формуле имён и переменных — прямым, если в качестве значений берутся элементы носителя; косвенным, если в качестве значений берутся функции или отношения, определённые на носителе. Если в качестве значений переменных разрешается брать только элементы носителя, язык называют элементарным языком, или языком первого порядка. Если же в качестве значений переменных разрешается брать также функции и отношения, язык называют языком второго порядка.
Выразительные возможности языков первого порядка довольно ограничены. Например, на языке первого порядка можно сообщить, что носитель содержит ровно 17 элементов, но невозможно выразить его конечность.
На языке второго порядка выразить конечность носителя возможно. Возникает совершенно естественное недоумение: а зачем тогда пользоваться языками первого порядка с их бедными выразительными средствами, не лучше ли пользоваться языками второго порядка? Однако выразительные средства языков второго порядка оказываются слишком богатыми. В частности, на языке второго порядка можно написать формулу, выражающую существование множества с мощностью, промежуточной между мощностями счётной и континуальной. В свете известных результатов Гёделя 1940 г. и Коэна 1963 г. сама постановка вопроса о том, является эта формула истинной или ложной, перестаёт иметь ясный смысл.
На занятии предполагается проиллюстрировать сказанное конкретными примерами, в частности — предъявить ту выражающую континуум-гипотезу формулу, о которой выше шла речь.
Материалы к лекции:
Успенский Владимир Андреевич, доктор физико-математических наук, профессор.
Летняя школа «Современная математика», г. Дубна
20 июля 2012 г.
Теорема Гёделя о неполноте — едва ли не самая знаменитая теорема математики. Она утверждает, что какие бы способы доказывания ни предложить, в любом достаточно богатом языке найдутся истинные, но не доказуемые утверждения. Богатство языка есть его способность выражать факты. Оказывается, что для целей теоремы Гёделя богатство языка достаточно понимать как его способность выражать принадлежность натуральных чисел перечислимым множествам.
Знаменитая Теорема Гёделя о неполноте имеет две версии — синтаксическую (объявленную и доказанную самим Гёделем) и семантическую (чаще всего фигурирующую в популярных рассуждениях о великой Теореме). Семантическая версия утверждает, что какую бы систему формальных доказательств ни придумать, в языке найдутся истинные утверждения, не доказуемые в рамках предложенной системы. Таким образом, семантическая версия исходит из того, что некоторые выражения языка выражают осмысленные утверждения, являющиеся истинными или ложными. Синтаксическая версия не опирается на то, что какие бы то ни было выражения языка имеют какой-то смысл, она смотрит на выражения как на синтаксические конструкции, то есть как на цепочки символов, организованные по определённым правилам.
Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.
В отличие от метрической теории алгоритмов, дескриптивная теория не занимается измерением ресурсов (таких как время, объём памяти), затрачиваемых при применении алгоритма к его возможным исходным данным (в другой терминологии — к его входам). Её интересует лишь, возможен алгоритм для решения данной задачи или нет. Начальные понятия дескриптивной теории алгоритмов суть: конструктивный обьект, алгоритм, число шагов алгоритма, вычислимая функция, перечислимое множество, разрешимое множество, сводимость нумераций, главная вычислимая нумерация, вычислимая операция.
Действительно ли в математике всё определяется и доказывается? Можно ли определить понятие натурального числа? Можно ли определить Натуральный Ряд (с прописной буквы)? Можно ли аксиоматически определить понятие натурального ряда (со строчной буквы)? Можно ли доказать, что Великую теорему Ферма нельзя ни доказать, ни опровергнуть? Что такое доказательство? Можно ли математику сделать понятной?
В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
Потенциальная и актуальная бесконечность. Наивная теория множеств Кантора. Мощность. Парадоксы теории множеств. Интуиционизм, логицизм, формализм. Теория доказательств. Программа Гильберта. Аксиоматики ZFC, ZFD, NBG. Полнота и непротиворечивость формальных систем, теоремы Геделя. Современное состояние оснований математики.
Лекция Жана-Мишеля Кантора "Философские истоки начала теории множеств" на конференции "Математика и философия". Переводит Алексей Семихатов. Научно-популярный фестиваль "Дни науки в Петербурге" Фонда "Династия". Санкт-Петербург, Дом ученых РАН. 21 апреля 2008 года.
Парадоксы являются следствием дихотомии языка и мышления, выражением глубоких диалектических (теорема Гёделя позволила проявить диалектику в процессе познания) и гносеологических трудностей, связанных с понятиями предмета и предметной области в формальной логике, множества (класса) в логике и теории множеств, с употреблением принципа абстракции, позволяющего вводить в рассмотрение новые (абстрактные) объекты (бесконечность), со способами определения абстрактных объектов в науке и т. п. Поэтому не может быть дано универсального способа устранения всех парадоксов.