Выживает наиболее приспособленный или наиболее вероятный?
Биоразнообразие в биологии и энтропия в теории информации и термодинамике в сущности эквиваленты. Тропический лес со своим высочайшим видовым разнообразием имеет наибольшую энтропию: исследователь, гуляя по тропическим зарослям, не может предсказать, какое растение он встретит следующим. |
Дарвиновская теория эволюции основана на принципе выживания наиболее приспособленных. В конкуренции с себе подобными выигрывает тот, кто лучше всего подготовлен к местным условиям жизни. Так постепенно наращивается ряд всё более приспособленных и сложных существ. Одна из фундаментальных претензий к этому логическому построению: последовательный ряд усложнений противоречит второму закону термодинамики. Действительно, если в закрытой системе энтропия всегда возрастает, то жизнь действует вразрез с физическими законами: она стремится уменьшить энтропию системы. Джон Уитфилд, научный журналист, работающий в Лондоне, знакомит читателей с теориями и опытами, которые помогают это противоречие преодолеть.
Возникновение сложного из простого — это, казалось бы, злостное нарушение второго закона термодинамики. Второй закон требует постепенного выравнивания градиентов, разупорядочивания элементов и увеличения энтропии в системе. Тем не менее жизнь так специально устроена, чтобы поддерживать градиенты, упорядочивать элементы и уменьшать энтропию. Эти принципы справедливы как для одного организма, так и для целых экосистем, биот, эволюционных последовательностей. Значит ли это, что жизнь действительно противоречит законам физики?
В 70-е годы прошлого века Илья Пригожин провозгласил и доказал принцип самоорганизации и усложнения неравновесных систем. Он показал возможность появления сложного поведения открытых систем в условиях постоянного притока энергии. А живые объекты как раз и являются именно такими открытыми системами с притоком энергии и материи. С тех пор прошло уже немало времени, но теории эволюции открытых систем пока не создано. По всей вероятности, причиной тому конфликт понятийного аппарата дарвиновской теории естественного отбора Дарвина и физики. Физические величины можно так или иначе подсчитать, а вот как подсчитать приспособленность? Эрик Смит (Eric Smith), физик из Института Санта-Фе (Santa Fe Institute, Нью-Мексико, США), предлагает новый понятийный аппарат для описания эволюции в частности и жизни в целом.
По его мнению, самоорганизующиеся системы — это особые машины для выравнивания градиентов. Он предлагает рассматривать жизнь как один из частных случаев такой конструкции для быстрого выравнивания градиентов. Если создается градиент каких-то условий, например температурный градиент от тропиков к полюсам, то создаются упорядоченные и предсказуемые атмосферные структуры, а проще говоря — ветер, который выравнивает этот градиент. И делает он это несравненно быстрее, чем если бы температура выравнивалась в статичной атмосфере. Так что сложные структуры, возникающие в системе с постоянным потоком энергии, сами по себе работают строго в соответствии со вторым законом термодинамики — выравнивают градиенты и увеличивают энтропию.
В этом отношении работа живых систем не отличается от работы систем физических или химических. Живые организмы призваны накапливать в себе энергию и рассеивать ее по пространству планеты, быстро избавляя ее от градиентов энергии и материи. Тем самым жизнь не только не противоречит второму закону термодинамики, но даже и всячески его подтверждает. И чем эффективнее организм фиксирует градиент материи и энергии (пищи, тепла, солнечной и химической энергии), чем быстрее он их усваивает и передает по пищевой цепи или просто рассеивает в пространстве, тем более уравновешенной становится система. Так, заросший пруд с водорослями и планктоном зафиксирует и передаст в систему планеты гораздо больше энтропии, чем резервуар со стерильной водой. А ведь эволюция как раз и направлена на то, чтобы создавать организмы, эффективно усваивающие и передающие дальше энергию и материю.
Таким образом, парадокс эволюции заключается в том, что, создавая сложные биологические системы, эволюция увеличивает общую энтропию планеты, а вовсе не уменьшает ее. В открытой неравновесной системе наиболее вероятным будет такое положение, которое наилучшим и наискорейшим образом уберет градиенты и увеличит энтропию. В связи с этим Эрик Смит задает риторический вопрос: не лучше ли обсуждать эволюцию не с точки зрения выживания наиболее приспособленных, а с точки зрения выживания наиболее вероятных? Ведь в нашей неравновесной системе с притоком энергии извне наиболее вероятной окажется конструкция, эффективно уничтожающая градиенты и работающая в русле второго закона термодинамики, то есть живая система. И отбор будет призван ориентироваться не на самых приспособленных, а на самых вероятных. И при этом останется столь же естественным (что же более естественно, чем второй закон термодинамики!), как и дарвиновский.
Ученые, работающие в русле этой концепции, уже начали публиковать свои первые исследования. Расчеты строятся на том базовом принципе, что система должна свести к минимуму использование энергии для создания максимума энтропии. В этом смысле живая система или ее отдельные элементы уподобляются текущей реке, пробивающей себе русло поудобнее, чтобы побыстрее вынести воду к своему устью. В рамках этой концепции была удачно смоделирована работа фермента АТФ-синтазы, ответственного за производство энергии в клетке — это работы Родерика Дьюара (Roderick Dewar) и коллег из Лаборатории экологии и физики окружающей среды в Бордо (при Французском национальном сельскохозяйственном исследовательском институте, INRA). С тех же позиций Адриан Бежан (Adrian Bejan) c коллегами из Университета Дьюка (Duke University, Дурхам, Северная Каролина, США) рассмотрел эволюцию способов локомоции у животных.
Сравнивая принципы поведения живых систем с неживыми, неизбежно упираешься в принципиальное различие. Ведь живые системы, какими бы они ни были — молекулой РНК, клеткой или целым сосновым лесом, — способны воспроизводить сами себя. Неживые лишены этой способности. Это различие может свести на нет все аналогии с термодинамикой в неорганическом мире. Однако Чарльз Лайнвивер (Charles Lineweaver), астроном и астробиолог из Австралийского национального университета в Канберре (Australian National University), считает проблему репликации жизни не более чем уловкой, следствием близорукости биологов в вопросах определения жизни. Почему, спрашивает он, мы считаем, что информация о системе должна храниться внутри самой системы? Это вовсе не обязательно. Например, рождение звезд зависит от состояния предшествующей генерации звезд, от того, какой они образовали набор элементов и как изменили гравитацию окружающей среды. Все зависит от условий среды: от того, какая вокруг имеется материя и сколько энергии; а где при этом хранится информация — не так важно. Важно, что переход от нежизни к жизни получается постепенный, и Лайнвивер надеется найти количественный параметр, описывающий поведение «далеких от равновесия диссипативных систем». А в эту категорию равноправно входят и ураганы, и зеленые растения. По словам Родерика Дьюара, у нас нет оснований придумывать одни физические законы для неживого, а другие для живого, как нет оснований придумывать одну химию для косной материи, другую для живой, — всеми процессами управляют единые потоки материи и энергии.
Источник: J. Whitfield. Survival of the Likeliest? // PLoS Biology. 2007, 5(5); doi:10.1371/journal.pbio.0050142.
Перевод: Елена Наймарк
Похожее
-
Владимир Буданов, Александр Панов, Карима Нигматулина-Мащицкая
На грани безумия
В обыденном окружении чаще всего призывают к целесообразности мыслей, поступков, решений. И, кстати, синонимы целесообразности звучат как «уместность, полезность и рациональность…» Вот только на интуитивном уровне кажется — чего-то не хватает. Энтропии? Беспорядка? Так его полно в физическом мире — утверждает ведущая программы, доктор физико-математических наук, Карима Нигматулина-Мащицкая. А гости программы пытались воссоединить в единое целое два понятия — энтропию и целесообразность. Участники программы: доктор философских наук, кандидат физико-математических наук, Владимир Буданов, и доктор физико-математических наук, Александр Панов.
-
Гордей Лесовик
Некоторое время назад мы с группой соавторов начали выводить второй закон термодинамики с точки зрения квантовой механики. Например, в одной из его формулировок, гласящей, что энтропия замкнутой системы не убывает, типично растет, а иногда остается постоянной, если система энергетически изолирована. Используя известные результаты квантовой теории информации, мы вывели некоторые условия, при которых это утверждение справедливо. Неожиданно выяснилось, что эти условия не совпадают с условием энергетической изолированности систем.
-
Эрвин Шрёдингер
Эрвин Рудольф Йозеф Александр Шредингер - австрийский физик-теоретик, лауреат Нобелевской премии по физике. Один из разработчиков квантовой механики и волновой теории материи. В 1945 г. Шредингер пишет книгу "Что такое жизнь с точки зрения физики?", оказавшую существенное влияние на развитие биофизики и молекулярной биологии. В этой книге внимательно рассмотрено несколько важнейших проблем. Основополагающим является вопрос: "Как могут физика и химия объяснить те явления в пространстве и времени, которые имеют место внутри живого организма?" Прочтение этой книги даст не только обширный теоретический материал, но и заставит задуматься над тем, что же в сущности есть жизнь?
-
Сергей Рубин, Владимир Буданов, Алексей Семихатов
На грани безумия
Энтропия — термин, которые слышали многие, а вот дать точное объяснение не каждому удастся. И в этом нет ничего удивительного, ведь наши познания о том, что нас окружает, как правило, очень поверхностны. Кто-то утверждает, что это разница между идеальным и реальным процессом. Но все же больше сходятся во мнении, что это мера хаоса. Ведь с самого детства нас приучают к порядку, отсюда и наполненность нашего мира флуктуациями и бифуркациями. Так к чему может привести война с энтропией? И нужна ли она вообще? Ведь если бы не хаос, сам мир бы не произошел…
-
Дмитрий Чернавский
Программа Гордона
Для описания процессов, протекающих на ранних стадиях биологической эволюции, достаточно знания законов физики и химии открытых систем. По каким законам происходило дальнейшее ее развитие? Можно ли в рамках современной науки понять и описать процессы, лежащие в основе возникновения жизни? Почему в современной биосфере господствует один вариант генетического кода и отсутствуют другие? О возникновении жизни как борьбе условных информаций — физик Дмитрий Сергеевич Чернавский.
-
Александр Марков
В научно-популярных статьях по археологии, геологии, палеонтологии, эволюционной биологии и другим дисциплинам, так или иначе связанным с реконструкциями событий далекого прошлого, то и дело встречаются абсолютные датировки: что-то произошло 10 тысяч лет назад, что-то 10 миллионов, а что-то — 4 миллиарда лет назад. Откуда берутся эти цифры?
-
Питер Эткинз
Эта книга предназначена для широкого круга читателей, желающих узнать больше об окружающем нас мире и о самих себе. Автор, известный ученый и популяризатор науки, с необычайной ясностью и глубиной объясняет устройство Вселенной, тайны квантового мира и генетики, эволюцию жизни и показывает важность математики для познания всей природы и человеческого разума в частности.
-
Энтропия. Пожалуй, это одно из самых сложных для понимания понятий, с которым вы можете встретиться в курсе физики, по крайней мере если говорить о физике классической. Мало кто из выпускников физических факультетов может объяснить, что это такое. Большинство проблем с пониманием энтропии, однако, можно снять, если понять одну вещь. Энтропия качественно отличается от других термодинамических величин: таких как давление, объём или внутренняя энергия, потому что является свойством не системы, а того, как мы эту систему рассматриваем. К сожалению в курсе термодинамики её обычно рассматривают наравне с другими термодинамическими функциями, что усугубляет непонимание.
-
Валерий Опойцев
Идеальный газ. Уравнение состояния газа. Взаимосвязь давления, температуры и объёма. Механизмы рождения макропараметров в рамках «молекулярного бильярда». Первое начало термодинамики как закон сохранения энергии. Вывод уравнения Бернулли. Энтропия и второе начало термодинамики. Тепловые машины и цикл Карно. Энтропия информационная. Энтропия как неопределённость. Аксиоматический подход к определению энтропии. Принцип максимума энтропии. Подход статистической физики за пределами термодинамики.
-
Джозеф Браун
На чем основаны генетические алгоритмы? Как происходит создание различных уровней в компьютерной игре? Каковы перспективы применения эволюционных алгоритмов? На эти и другие вопросы отвечает доцент Университета Иннополис Джозеф Браун. Процедурная генерация контента в играх — это процесс автоматического создания различных ресурсов. Таким образом можно создавать повествование или сюжет игры или более простые объекты, такие как деревья. Или какие-нибудь элементы игрового процесса. Например, какие будут уровни. Этим я в основном и занимаюсь: как создать уровень, который отвечает некоторым ожиданиям игрока и некоторым ожиданиям в контексте повествования. Я использую много приемов из области, которая называется вычислительный интеллект. А вычислительный интеллект применяет биоинспирированные методы для решения сложных задач оптимизации.
Далее >>>
|
|