Я приведу два весьма важных с прикладной точки зрения примера задач, которые тесно связаны с фундаментальными теоретическими вопросами.
1. Равномерное распределение точек в многомерном единичном кубе
Начнем с вопроса: как понимать «равномерное»? Существует несколько различных подходов. Один из них основан на минимальном расстоянии между точками. Этот подход ведет к понятию минимальных покрытий. Другой подход, тот, который мы обсудим в деталях, основан на идее подсчета точек в параллелепипедах со сторонами параллельными координатным осям. Такой подход ведет к понятию дискрепанса. Оказывается, что это понятие тесно связано с численным интегрированием функции многих переменных. Основная задача — построение систем точек с наименьшим дискрепансом. Другими словами — построение хороших кубатурных формул. При построении таких кубатурных формул важную роль играют теоретико-числовые методы.
2. Экономное представление функций
В реальной жизни многие сигналы могут быть приближенно представлены в виде линейной комбинации небольшого числа базисных функций. Например, это относится к музыке, где можно использовать тригонометрическую систему в качестве источника базисных функций. Такие представления называются «разреженными» (sparse). В современных проблемах обработки больших данных приходится работать с более общими, чем, скажем, тригонометрическая, системами функций, которые могут быть переполненными. Возникает естественный вопрос. Как строить разреженные приближения? Оказывается, существует общий подход для построения разреженных приближений, который хорошо работает как для систем с хорошей структурой (например, тригонометрическая) так и для общих систем, не имеющих хороших структурных свойств. Этот подход основан на «жадных (greedy) алгоритмах».
Во всех упомянутых направлениях будут сформулированы фундаментальные открытые проблемы.
Темляков Владимир Николаевич — доктор физико-математических наук, профессор.
Летняя школа «Современная математика» имени Виталия Арнольда
Московская область, г. Дубна, дом отдыха «Ратмино»
20 июля 2018 г.
Мы обсудим несколько наглядных сюжетов на стыке математики, физики, химии, географии (закон сохранения энергии, молекула в виде листа Мебиуса, теорема Эйлера и другие). Мы постараемся дать интуитивно почувствовать, и не обсуждать формально некоторые красивые математические понятия. Не требуется до лекции (и не появится после лекции) никаких формальных знаний.
В лекции будет освещена основная концепция Ньютона, согласно которой законы природы описываются на языке математического анализа (по преимуществу, на языке дифференциальных уравнений). Будет рассказано о математическом описании законов Архимеда, Галилея, Кеплера, Ферма, Гука, о началах математической физики в трудах Н. Бернулли, Эйлера, Лапласа и Фурье, о формуле сложения скоростей Эйнштейна и об уравнении Шрёдингера.
Отрывок из книги математиков Андрея Райгородского и Нелли Литвак, посвященный истории онлайн-рекламы, нобелевскому лауреату Уильяму Викри и стоимости одного клика.
О сложности вычислений и квантовых компьютерах рассказывает Александр Ханиевич Шень — кандидат физико-математических наук, научный сотрудник Института проблем передачи информации РАН (Москва) и LIF CNRS — Лаборатории информатики Национального центра научных исследований Франции (Марсель). Лекция была прочитана 23 апреля 2009 года в Москве, в ФИАНе.
Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
Для случайного распределения k точек на целочисленной окружности длины два «параметра стохастичности» β и λ были определены (независимо друг от друга) А.Н. Колмогоровым в 1933 году и В.И. Арнольдом в 2003 году. На занятиях будет показано, что эти параметры, кажущиеся независимыми характеристиками поля случайных точек, становятся функционально зависимыми, когда их значения усреднены по малым флуктуациям точек поля.
Если у (обычного плоского) квадрата склеить противолежащие стороны, то получится тор с плоской метрикой, то есть каждый достаточно малый участок тора будет устроен как кусочек евклидовой плоскости. Если квадрат заменить на прямоугольник или параллелограмм, аналогичная склейка тоже даст тор с плоской метрикой, но про него разумно сказать — это другой тор, не изометричный первому. Здесь история о поверхностях с плоской метрикой заканчивается, так как никакую другую поверхность (с плоской метрикой) кроме этих торов из куска евклидовой плоскости склеить нельзя. Поэтому мы евклидову плоскость заменим на плоскость Лобачевского (с ней больше свободы!) и определим пространство Тейхмюллера как пространство, элементы которого суть все возможные способы склеить поверхность рода g (т.е. сфера с g ручками) из гиперболической развертки, то есть, из некоторого куска гиперболической плоскости.
Иногда мы хотим доказать, что какой-нибудь объект существует. Разумеется, можно медленно и методично объект построить. Но это что-то делать надо, а хочется получить кое-что задаром. Поэтому мы просто возьмём случайный объект и заметим, что он подходит с ненулевой вероятностью. Это позволяет избежать занудной конструкции. Заодно можно спрятать в доказательстве незаметную ошибку. Для понимания курса нужно будет знать определение независимых событий. Понимать, что это такое, не обязательно, всё равно в ходе курса такое понимание (или только его иллюзию?) можно будет утратить.
Пользуясь цифрами 0 и 1, несложно записать натуральное число. Сложение в столбик позволяет прибавить к этому числу единицу. Такой способ записи и изменения числа требует в некоторых ситуациях прочитать и изменить все цифры. А если число большое и мы хотим читать и писать поменьше цифр, но можем быстро запросить любые цифры числа «вразбивку»? Разумеется, придётся изменить представление числа. С середины 20-го века известны коды Грея; нам всё равно потребуется иногда читать число целиком, зато менять надо будет лишь по одной цифре за раз. А можно ли прибавить к числу единицу, не читая всего числа? Оказывается, можно.