Алгебры доказуемости
Аксиоматические системы, такие как арифметика Пеано и ее фрагменты, являются традиционными объектами изучения в математической логике. В докладе будет рассказано о сравнительно новом подходе к изучению таких систем с алгебраической точки зрения. Будут описаны алгебраические структуры, возникающие при изучении формальной доказуемости, и приведены некоторые применения этих структур к вопросу о порядках роста вычислимых функций для фрагментов арифметики и к построению простых утверждений комбинаторного характера, независимых от аксиом арифметики Пеано. Также будет рассказано о топологической точке зрения на алгебры доказуемости, которая приводит к изучению некоторого интересного класса пространств.
Беклемишев Лев Дмитриевич, доктор физико-математических наук, член-корреспондент РАН.
Семинар «Глобус», г. Москва, конференц-зал НМУ
16 февраля 2012 г.
Похожее
-
Лев Беклемишев
В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество X имеет хотя бы одну изолированную точку.
-
Мария Саямова
Математика отличается прежде всего неопределенностью предмета исследования. Объект, который она изучает, имеет ускользающую природу: вроде бы математика не занимается исследованием реального мира, и в то же время без математики его понимание невозможно. Один из подходов к обоснованию предмета математики получил название математического платонизма. Насколько он плодотворен и полезен с когнитивной точки зрения?
-
Лев Беклемишев
Классическая логика высказываний исходит из предположения о том, что любые высказывания либо истинны, либо ложны. Логика доказуемости отражает более глубокую картину мира, осознанную после теорем Гёделя о неполноте: истинность высказывания, вообще говоря, не равносильна его доказуемости. Можно ли — и если да, то как — говорить на уровне логики о доказуемости или недоказуемости высказываний, наряду с их истинностью или ложностью?
-
Янов Ю. И.
В связи с разными точками зрения на природу математики рассматриваются вопросы о метаматематическом понятии истины и возможности убедительного доказательства истинности математических теорем.
-
ВВС
Математика — универсальный язык Вселенной, фундамент, на котором основаны все другие науки. Как человечество смогло открыть тайны этого универсального языка? Начиная с древнейших времен, прослеживается история математики до наших дней и завершается рассказом о наиболее важных проблемах современности. Их решение позволит лучше понять устройство нашего мира.
-
Виталий Целищев
Доклад Виталия Целищева "Эпистемология математического доказательства" на конференции "Математика и философия". Научно-популярный фестиваль "Дни науки в Петерьурге" Фонда Династия. Санкт-Петербург, Дом ученых РАН. 21 апреля 2008 года.
-
Юрий Ершов
Программа Гордона
Доказательность — главнейшая особенность математики, науки, представляющей образцы точности рассуждений. Но понятие доказательства долгое время не имело точного математического определения. О парадоксах в теории множеств и основаниях математики — академик РАН Юрий Ершов.
-
Беклемишев Лев
В чем заключается аксиоматический метод? Как развивалось понятие аксиомы? Кем был разработан аксиоматический метод? Какое место он занимает в математике? И какой критике подвергается этот метод? Математик Лев Беклемишев о неевклидовой геометрии, системе аксиом Гильберта и смысле в математике.
-
Лев Беклемишев
Классическая логика высказываний исходит из предположения о том, что любые высказывания либо истинны, либо ложны. Логика доказуемости отражает более глубокую картину мира, осознанную после теорем Гёделя о неполноте: истинность высказывания, вообще говоря, не равносильна его доказуемости. Можно ли — и если да, то как — говорить на уровне логики о доказуемости или недоказуемости высказываний, наряду с их истинностью или ложностью? Программа: Логика высказываний и её модели. Модальная логика, модели Крипке. Логика Гёделя-Лёба GL. Теорема о полноте логики GL по Крипке на конечных деревьях. Формальная арифметика Пеано. Гёделева нумерация. Теорема о неподвижной точке. Формулы доказуемости и непротиворечивости. Теоремы Гёделя, Россера и Лёба. Доказуемость как модальность: арифметическая интерпретация логики GL. Замкнутые модальные формулы, последовательность Тьюринга, локальная рефлексия. Существование и единственность модально определимых неподвижных точек (теорема де Йонга).
-
Лев Беклемишев
Вычислимая функция f:N→N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение «для любого x существует y такой, что f(x)=y». В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения различных формальных теорий. Такой подход приводит к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений. Мы начнем с понятия машины Тьюринга и вычислимой функции. Разберемся, как формальная арифметика может говорить о вычислениях. Поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда выведем первую теорему Гёделя о неполноте.
Далее >>>
|
|