Примерно 40 лет тому назад Мартин Гарднер придумал такую задачу: “В некотором царстве, в некотором государстве пришло время принцессе выбирать себе жениха. В назначенный день явились 1000 царевичей и королевичей, их построили в очередь в случайном порядке и стали по одному приглашать к принцессе. Про любых двух претендентов принцесса, познакомившись с ними, может сказать, какой из них лучше. Познакомившись с претендентом, принцесса может либо принять предложение (и тогда выбор сделан навсегда), либо отвергнуть его (и тогда претендент потерян: царевичи и королевичи гордые и не возвращаются). Какой стратегии должна придерживаться принцесса, чтобы с наибольшей вероятностью выбрать лучшего из претендентов?”.
В 1965 году её формулировку и решение рассказал на своём семинаре Е. Б. Дынкин. Но его метод был необобщаем на другие варианты задачи: например, когда целью является выбор не наилучшего, а одного из трёх лучших. В таком виде задача была решена лектором при помощи метода, который легко переносится и на ряд близких задач. Так из полушуточной задачи вырос новый раздел математики — теория оптимальной остановки случайных процессов.
Формально задача может быть сформулирована следующим образом:
Невеста ищет себе жениха (существует единственное вакантное место).
Есть известное число претендентов — n.
Невеста общается с претендентами в случайном порядке, с каждым не более одного раза.
О каждом текущем претенденте известно, лучше он или хуже любого из предыдущих.
В результате общения с текущим претендентом невеста должна либо ему отказать, либо принять его предложение. Если предложение принято, процесс останавливается.
Цель — выбрать лучшего претендента.
В 1963 году академик РАН Евгений Дынкин предложил решение этой задачи для частного случая. Общее решение было найдено Сабиром Гусейн-Заде в 1966 году.
Этой задаче было уделено много внимания во многом потому, что оптимальная стратегия имеет интересную особенность: если число кандидатов достаточно велико (порядка сотни), оптимальная стратегия будет заключаться в том, чтобы отклонить всех первых (где — основание натурального логарифма) претендентов и затем выбрать первого, кто будет лучше всех предыдущих. При увеличении вероятность выбора наилучшего претендента стремится к , то есть примерно к 37%.
Примечательно, что диссертация член-корреспондента РАН Бориса Березовского на соискание ученой степени доктора наук «Разработка теоретических основ алгоритмизации принятия предпроектных решений и их применения», защищенная в 1983 году, является обобщением задачи о разборчивой невесте.
Гусейн-Заде Сабир Меджидович, доктор физико-математических наук, профессор.
Популярные лекции по математике на Малом мехмате МГУ, г. Москва, 30 ноября 2002 г.
Мы обсудим фундаментальное математическое свойство вполне положительности и рассмотрим ряд примеров его возникновения в теории вероятностей. Лекцию читает Буфетов Александр Игоревич, доктор физико-математических наук.
Парадокс Бертрана заключается в следующем: рассмотрим равносторонний треугольник, вписанный в окружность. Наудачу выбирается хорда окружности. Какова вероятность того, что выбранная хорда длиннее стороны треугольника. Бертран предложил три решения, дающие различный результат.
Иногда мы хотим доказать, что какой-нибудь объект существует. Разумеется, можно медленно и методично объект построить. Но это что-то делать надо, а хочется получить кое-что задаром. Поэтому мы просто возьмём случайный объект и заметим, что он подходит с ненулевой вероятностью. Это позволяет избежать занудной конструкции. Заодно можно спрятать в доказательстве незаметную ошибку. Для понимания курса нужно будет знать определение независимых событий. Понимать, что это такое, не обязательно, всё равно в ходе курса такое понимание (или только его иллюзию?) можно будет утратить.
Последовательности {a_n} вещественных чисел сопоставим последовательность экспонент {exp(a_n)} на отрезке [−π,π]. При каких условиях на последовательность {a_n} эта система полна, то есть любую функцию можно приблизить линейной комбинацией наших экспонент? Вопрос становится особенно интересным, если последовательность {a_n} определяется случаем.
Для случайного распределения k точек на целочисленной окружности длины два «параметра стохастичности» β и λ были определены (независимо друг от друга) А.Н. Колмогоровым в 1933 году и В.И. Арнольдом в 2003 году. На занятиях будет показано, что эти параметры, кажущиеся независимыми характеристиками поля случайных точек, становятся функционально зависимыми, когда их значения усреднены по малым флуктуациям точек поля.
Стенограмма и видеозапись лекции доктора физико-математических наук, ведущего научного сотрудника Математического института имени Стеклова, ведущего научного сотрудника ИППИ РАН, профессора факультета математики Высшей школы экономики, директора исследований Национального центра научных исследований во Франции (CNRS) Александра Буфетова, прочитанной в рамках цикла «Публичные лекции "Полит.ру"» 6 февраля 2014 г.
Стоит ли доверять математической статистике? Если взять наугад сотню научных статей, использующих статистические методы, сколько в них будет ошибочных выводов? Как работает математическая статистика? Часто ли она ошибается? Что означает «различие оказалось статистически значимым (p<0.05)»? Мы попробуем во всём этом разобраться.
Лишь недавно, и, как всегда одновременно и независимо, нескольким группам математиков понадобилось по разным поводам систематически изучать случайно выбранные подгруппы данной группы. Для докладчика этим поводом стала задача: найти инвариантные относительно сопряжения меры на решетке всех подгрупп данной группы. Эта задача важна для теории представлений (фактор-представления некоторых групп), и для самой теории динамических систем (вполне несвободные действия). Другие поводы — асимптотика чисел Бетти на локально симметрических пространствах, действия групп на деревьях, теория блужданий на случайных однородных пространствах и, по-видимому, это не всё. Доклад будет посвящен общим понятиям, разбору фундаментального примера, а именно, — что такое случайная подгруппа симметрической группы — конечной и бесконечной, и, наконец, объяснению того, как все это связано с теорией характеров.
Сегодня я хочу рассказать вам о математике любви. Думаю, все согласятся с тем, что математики широко известны своими успехами на любовном поприще. Но причина не только в нашей решительности, отличных навыках поддержания беседы и красивых пеналах. Причина также и в том, что мы немало поработали над математикой поиска идеальной пары.