Связный граф с пятью вершинами и пятью рёбрами. Его можно полностью обойти и вернуться в исходную точку. |
Давно доказано, что всякий граф с такими свойствами можно нарисовать одним росчерком. При этом, начав движение из любой вершины, мы в итоге в неё же и вернёмся. А что будет, если отбросить последнее условие? Тогда можно допустить у графа наличие двух вершин, из которых выходит нечётное число рёбер. Ясно, что в этом случае обход фигуры следует начать из одной такой вершины, а закончить — в другой (например, одним росчерком на карте звёздного неба можно начертить ковш Большой Медведицы, соединив семь её наиболее ярких звёзд). Эти факты породили множество головоломок на вычерчивание замысловатых фигур. Одну из них придумал Льюис Кэрролл.
Фигура из трёх пересекающихся квадратов, нарисованная одним росчерком. |
Взгляните на фигуру из трёх пересекающихся квадратов. Сможете ли вы нарисовать её, не отрывая карандаша от бумаги и не проводя более одного раза по каждой линии?