Благодаря прогрессу в наблюдательной астрономии за последние 20 лет космология превратилась в одну из самых точных наук: из анализа экспериментальных данных многие физические величины определяются с ошибками меньше процента. Меньше десятка космологических параметров достаточно для описания видимой Вселенной, хотя наличие некоторых из них указывают на неполноту известной нам физики — общей теории относительности и/или физики элементарных частиц.
В первой половине лекции мы обсудим наблюдаемые, дающие представление о составе и истории развития Вселенной и познакомимся со Стандартной космологической моделью. Вторая половина лекции будет посвящена обсуждению разных аномалий и нестыковок при попытках дальнейшего уточнения физических параметров, с чем пришлось столкнуться в последние годы. Означает ли это, что мы подошли к следующей ступени понимания физики и космологии, или это рубеж, определяемый систематическими погрешностями используемых экспериментальных методов, пока неизвестно.
Я постараюсь показать, какие математические задачи возникают в космологии.
Андрей Дмитриевич Линде рассказывает о теории инфляционной Вселенной или теории Мультивселенной (Мультиверса). Термин «Multi-verse», заменяющий слово «Universe», означает, что вместо одной Вселенной — много вселенных сразу в одной.
Лекция посвящена тому, как последние открытия повлияли на наше представление о макромире и какие вопросы встали на повестку дня. Эволюция вселенной в первые мгновения после большого взрыва. Темная материя и темная энергия. Вещество и антивещество. Законы сохранения и барионное число. Как объяснить неоднородность вселенной. Теория инфляционной вселенной. Флуктуации вакуума. Реликтовые гравитационные волны.
Революционные открытия последних 15 лет в области космологии сделали эту область астрофизики одной из наиболее точных наук. Существенную роль в понимании природы Вселенной сыграла радиоастрономия, история которой связана с уникальными астрофизическими экспериментами. Достаточно вспомнить открытие и исследование радиогалактик и квазаров, пульсаров, атомарных и молекулярных линий, гравитационных линз и сверхмассивных черных дыр. Однако, на мой взгляд, самыми важными событиями стали открытие реликтового излучения и обнаружение его неоднородностей. Это привело к построению картины мира начала XXI века, на которую ориентируется современное естествознание. Мы познакомимся с методами исследования реликтового излучения и определения глобальных параметров Вселенной, а также обсудим нерешенные загадки Вселенной.
Почему мы рассматриваем окружающий мир через призму математической логики? Как была открыта планета Нептун? И как Максвелл вывел свои уравнения? Об этом рассказывает Алексей Михайлович Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
Юноша и нравящаяся ему девушка встречаются вечером у костра. Девушка задаёт вопрос о звёздном небе, и между собеседниками завязывается романтический диалог. Она спрашивает о планетах, звёздах и Вселенной, и он в образных выражениях, стихах и цитатах известных учёных (Джордано Бруно, Альберта Эйнштейна, Фрица Хоутерманса) отвечает на её вопросы, рассказывая о о загадках Космоса, загадках галактик, тайнах конечного и бесконечного. Заканчивается фильм грустным, но предопределённым переходом из романтического мира астрономии в простой и жестокий мир грубой и невесёлой обыденности.
Если Вселенная бесконечна, однородна и стационарна (а в XVIII-XIX веках астрономы в этом не сомневались), то в небе — в каком направлении ни посмотри — рано или поздно окажется звезда. То есть, всё небо должно быть сплошным образом заполнено яркими светящимися точками звезд. То есть, в ночи небо должно ярко светиться. А мы почему-то наблюдаем сплошное черное небо лишь с отдельными звездами.
Это путешествие увлекает нас к истокам зарождения жизни, Столпам Мироздания, давая возможность заглянуть далеко за облака космической пыли, туда, где рождаются огромные звезды, даря Вселенной свой свет, а может быть и жизнь.
Излучение колеблющимися массами гравитационных волн очень напоминает излучение электромагнитных волн колеблющимися электрическими зарядами. Согласно ОТО, гравитационные волны имеют такую же скорость, как электромагнитные волны, и тоже переносят энергию. Они вызывают движение (смещение) тел, встречающихся на их пути, но ожидаемый эффект настолько мал, что до сих пор не обнаружен. Еще в 1916 году Эйнштейн вычислил мощность гравитационного излучения вращающегося стержня длиной 1 метр. Если даже раскрутить его до такой скорости, что центробежная сила достигнет предела прочности материала на разрыв, мощность излучения окажется равной всего-навсего 10^–37 Вт, что зарегистрировать невозможно. Это делает совершенно нереальным обнаружение гравитационных волн от каких-либо «земных» источников – нужны гигантские массы и столь огромные мощности для приведения их в движение, что эта задача технически невыполнима.
Даже астрономы не всегда правильно понимают расширение Вселенной. Раздувающийся воздушный шар – старая, но хорошая аналогия расширения Вселенной. Галактики, расположенные на поверхности шара, неподвижны, но поскольку Вселенная расширяется, расстояние между ними возрастает, а размеры самих галактик не увеличиваются.