Зависимость «период-светимость звезд»
Чем дольше период изменения блеска переменной звезды класса цефеид, тем больше энергии она излучает.
Когда Китс писал «Звезда моя, ты постоянство света», он явно имел в виду не переменную Цефеиду. Большинство звезд, включая, к счастью для нас, Солнце, излучают свет и другие формы лучистой энергии с более или менее постоянной интенсивностью. Есть, однако, несколько классов звезд, с достаточным на то основанием названных переменными, яркость которых периодически возрастает и убывает из-за колебаний интенсивности поверхностного излучения. В результате наблюдаются циклические изменения свойства звезды, называемого светимостью и отражающего суммарный поток лучистой энергии, покидающий поверхность звезды. Особую историческую роль в развитии астрофизики сыграли переменные звезды класса цефеид, получившие свое название в честь созвездия Цефей, в котором находится первая открытая цефеида — δ Цефея.
Если проследить за динамикой изменения светимости цефеиды, выясняется, что ее усиление от минимума до пика происходит значительно быстрее, чем затухание, вне зависимости от разницы между максимальной и минимальной светимостью, которая может составлять от нескольких процентов до многократной. И такие колебания светимости у различных цефеид регулярно повторяются с периодичностью от нескольких суток до нескольких месяцев. При этом период цикла изменения светимости (время между максимумами или минимумами яркости) и перепад светимости (разность между максимумом и минимумом) остаются постоянными.
Благодаря этому свойству цефеиды послужили для астрономов первой эталонной свечой — объектом с заведомо известной светимостью. Электрическая лампочка мощностью 100 Вт, например, является прекрасной эталонной свечой в земных условиях. Обнаружив эталонную свечу в пространстве, можно измерить наблюдаемую интенсивность её излучения и, сопоставив её с заведомо известной исходной светимостью, определить геометрическое расстояние до источника света. Именно стандартные свечи позволяют астрономам добавлять в картах звездного неба третье измерение — удаленность — к двум наблюдаемым угловым координатам небесных объектов.
В начале XX века американский астроном Генриетта Ливитт заинтересовалась переменными цефеидами и начала их серьезно изучать. К 1912 году она накопила достаточно данных наблюдений, чтобы установить закономерность: чем ярче переменная цефеида, тем дольше длится ее цикл. Вскоре Эдвин Хаббл развил этот результат, связав период цефеиды не с наблюдаемой яркостью, а с присущей звезде светимостью — суммарной энергией, излучаемой звездой в космическое пространство. Так была открыта зависимость «период—светимость». Хаббл же первым использовал открытые им на новом телескопе цефеиды в туманности Андромеды в качестве стандартных свеч и обнаружил, что это вовсе не туманность, а соседняя галактика. За этим последовали открытия целого ряда новых галактик и, наконец, открытие закона Хаббла, установившего, что галактики разбегаются.
Энциклопедия Джеймса Трефила «Природа науки. 200 законов мироздания».
Джеймс Трефил — профессор физики университета Джорджа Мэйсона (США), один из наиболее известных западных авторов научно-популярных книг.
Похожее
-
Дмитрий Вибе
Вид ночного неба, усыпанного звездами, с давних пор вселяет в душу человека благоговение и восторг. Потому даже при некотором снижении общего интереса к науке астрономические новости иногда просачиваются в средства массовой информации, чтобы встряхнуть воображение читателя (или слушателя) сообщением о таинственном квазаре на самой окраине Вселенной, о взорвавшейся звезде или о черной дыре, затаившейся в недрах далекой галактики. Вполне естественно, что рано или поздно у заинтересованного человека возникает законный вопрос: «Да полно, уж не водят ли они меня за нос?» Действительно, по астрономии написано множество книг, снимаются научно-популярные фильмы, проводятся конференции, постоянно растут тиражи и объемы профессиональных астрономических журналов, и всё это — продукт простого разглядывания неба?
-
Если Вселенная бесконечна, однородна и стационарна (а в XVIII-XIX веках астрономы в этом не сомневались), то в небе — в каком направлении ни посмотри — рано или поздно окажется звезда. То есть, всё небо должно быть сплошным образом заполнено яркими светящимися точками звезд. То есть, в ночи небо должно ярко светиться. А мы почему-то наблюдаем сплошное черное небо лишь с отдельными звездами.
-
National Geographic
Это путешествие увлекает нас к истокам зарождения жизни, Столпам Мироздания, давая возможность заглянуть далеко за облака космической пыли, туда, где рождаются огромные звезды, даря Вселенной свой свет, а может быть и жизнь.
-
Путешествие за край пространства, чтобы понять природу бездны - черных дыр. Узнать, где они находятся, как они рождаются. В фильме-исследовании ученые показывают сложную динамику рождения черной дыры, а также исследуется вероятность превращения черных дыр в сверхмассивные черные дыры, которые располагаются в центрах галактик. Путешествие в сердце черной дыры для изучения вопроса, что произойдет с галактикой Млечный Путь в один прекрасный день, когда черная дыра в центре галактики взорвется.
-
Сергей Попов
Где более выгодные условия для возникновения жизни: на Марсе или на спутниках Сатурна и Юпитера? Может ли изучение нейтронных звезд помочь разобраться в фундаментальных физических законах? Когда наконец мы получим окончательное подтверждение существования черных дыр? Астрофизик Сергей Попов о всеволновой астрономии, современных телескопах и строении Вселенной.
-
National Geographic
Со вспышки массивной сверхновой возникает один из самых загадочных феноменом - черная дыра... Черные дыры были еще недавно детищем писателей-фантастов, которые в своих произведениях описывали страшные особенности этих космических монстров - поглощение вещества и энергии. Даже свет не мог вырваться из их цепких объятий! Сегодня ученые всего мира решают весьма сложную задачу - доказать наличие черных дыр во Вселенной. Сколь много их? Где они расположены? Один из уникальных экспериментов должен ответить на вопрос - есть ли черная дыра в нашей галактике?
-
Сергей Попов
Современная астрофизика постоянно расширяет представления о картине мира, добавляя новые детали к тому, что мы уже знаем о Солнечной системе, открывая неизведанное за ее пределами. Лектор дает 10 ключевых пунктов, которые помогут аудитории сформировать астрофизическую картину мира, получить представление о том, как современная космология описывает наш мир, а также объяснит основные понятия звездной эволюции, происхождение элементов, свойства галактик, даст представление о темной материи и темной энергии.
-
Сергей Фабрика
На лекции будет рассказано о формировании массивных звезд, их эволюции, формировании Сверхновых звезд, и в результате появлении нейтронных звезд и черных дыр. Черные дыры являются мощнейшими источниками излучения в космосе. Среди новых подобных объектов — открытие ультраярких рентгеновских источников.
-
Андрей Линде
Андрей Дмитриевич Линде рассказывает о теории инфляционной Вселенной или теории Мультивселенной (Мультиверса). Термин «Multi-verse», заменяющий слово «Universe», означает, что вместо одной Вселенной — много вселенных сразу в одной.
-
Алексей Семихатов
Почему мы рассматриваем окружающий мир через призму математической логики? Как была открыта планета Нептун? И как Максвелл вывел свои уравнения? Об этом рассказывает Алексей Михайлович Семихатов, доктор физико-математических наук, главный научный сотрудник Физического института им. Лебедева РАН.
Далее >>>
|
|