Общая постановка задачи. жадных (завистливых) разбойников делят добычу. Мы считаем, что каждое подмножество сокровищ каждый разбойник оценивает по своему разумению. Оценка всегда неотрицательна, и если часть сокровищ разбита на две непересекающиеся части ,, то оценка части равна сумме оценок частей и . Добыча считается безгранично делимой, т. е. каждый набор сокровищ может быть разделен на любое число частей, равных с точки зрения данного разбойника. Как разделить добычу?
Например, если разбойников два, то один делит на две равные, по его мнению, части, а другой выбирает.
Сергей Александрович Дориченко, главный редактор журнала «Квантик» и зав.отделом математики журнала «Квант», учитель математики.
В 1850 году преподобный Томас Киркман, британский математик и настоятель прихода в Ланкашире, сформулировал невинно выглядящую головоломку в развлекательном журнале для любителей математики. Задачка выглядит простой, но если попробовать её решить, то сразу понимаешь, что это не так. В силу своей ложной простоты задача быстро стала знаменитой. Свои решения присылали любители математики, а учёные публиковали научные статьи с попыткой сформулировать общее решение для проблемы. В результате, эта головоломка помогла сформировать новое направление математики.
В журнале «Квантик» № 5, 2016 была опубликована задача:«Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?» Удивительно, но ответ отрицателен — центр мог двигаться не по прямой! Мы дадим несколько решений, начнём издалека, зато узнаем по дороге много интересного.
8 августа 1900 года Давид Гильберт сделал на Втором Математическом конгрессе доклад, представив слушателям ставший с тех пор знаменитым список проблем столетия. За прошедшие сто с лишним лет большая их часть была решена – и, что важнее, в ходе их решения появились новые сюжеты и новое понимание. Я собираюсь затронуть несколько из них и обсудить, в каком контексте они формулировались и куда продвинулось наше понимание за эти сто лет. Этот курс предполагается обзорным и адресованным школьникам (в частности, он не предполагает предварительных сведений).
В 1994 году английский математик Эндрю Джон Уайлс опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел.