x, y, z

Приложения / Кибернетика, или управление и связь в животном и машине

Норберт Винер

Комментарии: 0
<<< |1|2|3|4|5|6| >>>

Приложения


^

Приложение I. Поведение, целенаправленность и телеология[204]

Артуро Розенблют, Норберт Винер и Джулиан Бигелоу

Настоящий этюд преследует двоякую цель. Во-первых, определить бихевиористический (поведенческий)[205] метод исследования естественных событий и классифицировать поведение. Во-вторых, подчеркнуть важность понятия целенаправленности.

Пусть дан некоторый объект, относительно отделенный от окружающей среды для своего изучения. Бихевиористический метод состоит в рассмотрении выхода объекта и отношений между выходом и входом. Под выходом понимается любое изменение, производимое объектом в окружении. Обратно, под входом понимается любое внешнее к объекту событие, изменяющее любым образом этот объект.

Предыдущая формулировка не содержит никакого упоминания о специфической структуре и внутренней организации объекта. Это принципиальное умолчание, ибо на нем основано различие между бихевиористическим и альтернативным функциональным методом. При функциональном анализе, в противоположность бихевиористическому подходу, главную цель составляет внутренняя организация изучаемого образования, его структура и свойства; отношения между объектом и окружением значат сравнительно мало. [с.297]

Из такого определения бихевиористического метода вытекает весьма широкое определение поведения. Под поведением понимается любое изменение объекта по отношению к окружающей среде. Это изменение может представлять собой преимущественно выход объекта при минимальном, дальнем или побочном входе; или же оно может быть непосредственно приписано определенному входу. В итоге любое преобразование объекта, заметное извне, может быть отмечено как поведение. Термин был бы поэтому слишком общим, чтобы приносить пользу, если бы не возможность ограничения его соответствующими прилагательными, другими словами, возможность классификации поведения.

Изменения энергии, сопутствующие поведению, дают основание для классификации. Активным поведением является такое, при котором объект служит источником выходной энергии, используемой в данной специфической реакции. Объект может аккумулировать энергию, приносимую дальним или относительно близким входом, но вход непосредственно не возбуждает выхода. При пассивном поведении, напротив, объект не составляет источника энергии; вся энергия в выходе должна быть приписана непосредственно входу (пример — бросание предмета), или же объект способен управлять энергией, остающейся внешней к нему в течение всей реакции (парящий полет птицы).

Активное поведение можно подразделить на два класса: нецеленаправленное (или случайное) и целенаправленное. Термин «целенаправленное» здесь означает, что действие или поведение допускает истолкование как направленное на достижение некоторой цели, т. е. некоторого конечного состояния, при котором объект вступает в определенную связь в пространстве или во времени с некоторым другим объектом или событием. Нецеленаправленным поведением является такое, которое нельзя истолковать подобным образом.

Слова «допускает истолкование», употребленные выше, могут показаться настолько туманными, что все различие теряет смысл. Однако признание, что поведение иногда бывает целенаправленным, — дело неизбежное и полезное, как можно видеть из следующего. В основе понятия целенаправленности лежит представление о нашей «произвольной деятельности». Но целенаправленность [с.298] произвольных действий — это не вопрос субъективной интерпретации, а физиологический факт. Совершая произвольное действие, мы произвольно выбираем специфическую цель, а не специфическое движение. Так, решив взять стакан с водой и поднести его ко рту, мы не приказываем определенным мышцам сократиться в определенной степени и в определенной последовательности — мы просто задаемся целью, и реакция следует автоматически. Экспериментальная физиология была до сих пор по существу неспособна объяснить механизм произвольной деятельности. Мы осмеливаемся связать эту неудачу с тем обстоятельством, что экспериментатор, раздражающий двигательные области коры головного мозга, отнюдь не воспроизводит произвольной реакции; он задает эффективные, «выходные» пути, но не задает цели, как при произвольном движении.

Часто выражался взгляд, что все машины целенаправленны. Это несостоятельный взгляд. Во-первых, можно сослаться на механические устройства типа рулетки для азартной игры, специально созданные для нецеленаправленности. Далее, существуют устройства типа часов, созданные, правда, с определенной целью, но обладающие нецеленаправленным, хотя и регулярным, поведением; в самом деле, нет никакого специфического конечного состояния, к которому стремилось бы движение часов. Подобно этому, хотя ружье можно использовать для вполне определенной цели, целенаправленность не присуща внутренне его действию; возможна случайная пальба, нарочито бесцельная.

Некоторые машины, с другой стороны, внутренне целенаправленны. Возьмем, например, торпеду, снабженную механизмом поиска цели. Для обозначения машин с внутренне целенаправленным поведением был специально выкован термин «сервомеханизм».

Эти соображения показывают, что хотя определение целенаправленного поведения остается относительно смутным и лишенным точного операционального значения[206], самое понятие целенаправленности полезно и заслуживает сохранения. [с.299]

Целенаправленное активное поведение можно подразделить на два класса: «с обратной связью» (или «телеологическое») и «без обратной связи» (или «нетелеологическое»). Выражение «обратная связь» употребляется инженерами в двух различных смыслах. В широком смысле оно означает, что часть выходной энергии аппарата или машины возвращается как вход; примером может служить электрический усилитель с обратной связью. Обратная связь в этих случаях положительна: часть выхода, снова поступающая в объект, имеет тот же знак, что и первоначальный входной сигнал. Положительная обратная связь прибавляется к входным сигналам, она не корректирует их. Термин «обратная связь» применяется также в более узком смысле для обозначения того, что поведение объекта управляется величиной ошибки в положении объекта по отношению к некоторой специфической цели. В этом случае обратная связь отрицательна, т. е. сигналы от цели используются для ограничения выходов, которые в противном случае шли бы дальше цели. Это второе значение термина «обратная связь» и имеется здесь в виду.

Можно считать, что всякое целенаправленное действие требует отрицательной обратной связи. Если цель должна быть достигнута, то в какой-то момент необходимы сигналы от нее, чтобы направить поведение. Под поведением без обратной связи понимается такое, при котором сигналы от цели не изменяют деятельности объекта в процессе поведения. Так, можно послать машину сразить светящийся объект, хотя машина может быть нечувствительна к свету. Подобно этому змея может броситься на лягушку или лягушка — на муху, не получая зрительных или иных впечатлений от жертвы после начала движения. Действительно, движение в этих случаях происходит настолько быстро, что нервные импульсы едва ли имеют время сформироваться в сетчатке глаза, дойти до центральной нервной системы и возбудить новые импульсы, которые бы своевременно достигли мышц для эффективной перемены поведения.

В противоположность рассмотренным примерам поведение некоторых машин и некоторые реакции живых организмов включают в себя непрерывную обратную связь от цели, изменяющую и направляющую [с.300] действующий объект. Этот тип поведения эффективнее, чем предыдущий, особенно когда цель нестационарна. Но управление с непрерывной обратной связью способно привести к весьма неуклюжему поведению, если обратная связь плохо демпфирована и для некоторых частот колебаний вместо отрицательной становится положительной. Предположим, например, что построена машина для поражения движущейся светящейся цели; траектория, описываемая машиной, регулируется направлением и силой света от цели. Предположим, что следуя движению цели в определенном направлении, машина далеко проскочит за цель и что будет приложено чрезмерно большое усилие, чтобы развернуть машину в противоположном направлении. Если это движение вновь промахнется, начнется серия все более сильных колебаний, и машина упустит цель.

Эта картина последствий недемпфированной обратной связи удивительно напоминает то, что наблюдается при выполнении произвольного действия больным, у которого поврежден мозжечок. В состоянии покоя субъект не обнаруживает заметного двигательного расстройства. Если, однако, попросить его поднести ко рту стакан с водой, то рука, несущая стакан, будет совершать, по мере приближения к цели, серию колебательных движений возрастающей амплитуды; в результате вода расплещется, и намерение не будет осуществлено. Этот симптом типичен для расстроенной моторики больных с мозжечковым заболеванием. Аналогия с поведением машины, наделенной недемпфированной обратной связью, столь очевидна, что мы решаемся видеть главную функцию мозжечка в регулировании нервных механизмов обратной связи, участвующих в целенаправленной двигательной активности.

Целенаправленное поведение с обратной связью можно опять подразделить. Оно может быть экстраполирующим (предсказывающим) или неэкстраполирующим (непредсказывающим). Реакции одноклеточных организмов, так называемые тропизмы, дают примеры непредсказывающего поведения. Амеба просто следует за источником, на который она реагирует; нет никаких данных о том, что она экстраполирует его траекторию. С другой стороны, предсказывающее поведение животных — самая обыкновенная вещь. Кошка, начинающая [с.301] преследование бегущей мыши, не бежит прямо к месту, где мышь в данный момент находится, а движется к экстраполированному будущему положению. Не составит также труда найти примеры предсказывающих и непредсказывающих сервомеханизмов.

Предсказывающее поведение можно подразделить на различные порядки. Кошка, охотящаяся за мышью, — пример предсказания первого порядка; она предсказывает только мышиный путь. Бросание камня в движущуюся мишень требует предсказания второго порядка; здесь необходимо предвидеть пути мишени и камня. Примером предсказания более высокого порядка является стрельба из рогатки или лука.

Предсказывающее поведение требует различения по меньшей мере двух координат: оси времени и хотя бы одной пространственной оси. Предсказание, однако, будет эффективнее и гибче, если действующий объект способен реагировать на изменения более чем в одной пространственной координате. Чувствительные рецепторы организма или соответствующие им элементы машины могут поэтому ограничивать предсказывающее поведение. Так, собака-ищейка следует следу; предсказывающее поведение ей не доступно, потому что химический, обонятельный вход приносит только пространственную информацию — расстояние, указываемое силой запаха. Внешние изменения, способные возбуждать слуховые или, еще лучше, зрительные рецепторы, допускают более точную пространственную локализацию; отсюда возможность более эффективных предсказывающих реакций при действии входа на эти рецепторы.

Способность к предсказывающим действиям встречает, помимо того, ограничения во внутренней организации действующего объекта. Так, машина, предназначенная для предсказывающего слежения за подвижной светящейся целью, должна не только быть чувствительна к свету (например, через приданный ей фотоэлемент), но и обладать структурой, пригодной для расшифровки светового входа. Представляется вероятным, что ограничения внутренней организации, особенно организации центральной нервной системы, определяют сложность предсказывающего поведения, которой может достичь млекопитающее. Так, можно подумать, что нервная система крысы или собаки не позволяет им [с.302] осуществлять интеграцию входа и выхода, необходимую дли предсказывающей реакции третьего или четвертого порядка. Действительно, одна из особенностей скачка, наблюдаемого при сравнении человека с другими высшими млекопитающими, заключается, по-видимому, в том, что последние способны лишь к предсказывающему поведению низшего порядка, тогда как человек потенциально способен к весьма высоким порядкам предсказания.

Ниже приводится таблица предлагаемой классификации поведения:

Таблица предлагаемой классификации поведения

Нетрудно видеть, что каждая из дихотомий произвольно выделяет одну черту, признаваемую интересной, оставляя аморфный остаток — не-класс. Очевидно также, что критерии отдельных дихотомий разнородны. Понятно поэтому, что существует много других линий классификации, независимых от рассмотренных. Так, можно разделить поведение в целом или внутри каждой из табличных групп на линейное (выход пропорционален входу) и нелинейное. Для многих целей было бы полезно деление на непрерывное и дискретное поведение. Различные степени свободы, свойственные поведению, также могут служить основанием систематизации.

Классификация, представленная в предыдущей таблице, была выбрана по нескольким причинам. Она приводит к выделению класса предсказывающего [с.303] поведения — особо интересного класса, ввиду открывающейся возможности систематизировать все более сложные критерии поведения организмов. Она делает упор на понятиях целенаправленности и телеологии, понятиях, как мы видели, большого значения, хотя и дискредитированных сегодня. Наконец, она показывает, что единообразный бихевиористический анализ применим как к машинам, так и к живым организмам, независимо от сложности поведения.

Иногда утверждалось, что конструкторы машин просто пытаются воспроизводить действия живых организмов. Это некритическое мнение. В том, что поведение некоторых машин являет грубое сходство с реакциями организмов, нет ничего необычайного. Поведение животных включает много разновидностей всех возможных способов поведения, а изобретенные до сих пор машины еще очень далеки от исчерпания всех этих возможностей. Отсюда значительное перекрытие двух названных областей поведения. Нетрудно, однако, найти примеры созданных человеком машин, поведение которых превосходит человеческое поведение. Взять хотя бы машины с электрическим выходом; ведь люди, в отличие от электрических рыб, неспособны к испусканию электричества. Еще лучше, пожалуй, пример радио: не известно ни одного животного, которое обладало бы способностью к генерации коротких волн, даже если принимать всерьез так называемые опыты по телепатии.

Дальнейшее сравнение животных организмов и машин приводит к следующим выводам. В настоящее время методы изучения обеих групп подобны. Будут ли они столь же близки всегда, зависит, по всей видимости, от существования или несуществования качественно особых, уникальных характеристик, свойственных одной группе и отсутствующих у другой. Покамест таких качественных различий не обнаружено.

Общие классы поведения одинаковы для машин и для живых организмов. Специфические, узкие классы могут принадлежать исключительно одной или другой группе. Так, никакая из существующих машин не могла бы написать санскрито-мандаринский словарь[207]. С другой [с.304] стороны, мы не знаем ни одного живого организма, который бы катился на колесах; представим себе, каковы бы были последствия, если бы инженеры настаивали на копировании живых организмов и вместо колес снабжали бы свои локомотивы руками и ногами!

В то время как бихевиористический анализ машин и живых организмов в основном единообразен, функциональное исследование их обнаруживает глубокие различия. Структурно организмы по преимуществу коллоидальны и содержат главным образом белковые молекулы — большие, сложные и анизотропные; машины чаще всего металлические и содержат главным образом малые молекулы. С энергетической точки зрения машины обыкновенно отличаются высокими разностями потенциалов, обеспечивающими быструю мобилизацию энергии; в организмах энергия распределена равномернее и не очень мобильна. Так, в электрических машинах проводимость большей частью электронная, тогда как в организмах электрические изменения обыкновенно ионные.

В машинах широта и гибкость достигаются в основном умножением эффектов во времени; легко получаются и используются частоты в миллион герц и выше. В организмах правилом является не временно́е, а пространственное умножение; временные достижения бедны — самые быстрые нервные волокна могут проводить только около тысячи импульсов в секунду; пространственное же умножение обильно и изумительно в своей компактности. Это различие хорошо иллюстрируется сравнением телевизора и глаза. Телевизор можно рассматривать как одноколбочковую сетчатку; образы формируются разверткой, т. е. регулярным последовательным детектированием сигнала со скоростью около 20 миллионов в секунду. Развертка — это процесс, который редко, если когда-либо вообще, встречается в организмах, требуя высоких частот для эффективного осуществления[208]. Глаз же использует пространственный умножитель. Вместо единственной колбочки телевизора мы находим в человеческом глазу около шести с половиной [с.305] миллионов колбочек и около ста пятнадцати миллионов палочек.

Если бы инженеру пришлось конструировать робота, грубо подобного по своему поведению некоторому живому организму, то сегодня он не стал бы обращаться для этого к белкам и иным коллоидам. Он, вероятно, построил бы его из металлических частей, диэлектриков и многочисленных электронных ламп. Движения робота могли бы быть гораздо быстрее и сильнее соответствующих движений первоначального организма. Зато обучение и память оставались бы весьма рудиментарными. В будущие годы, когда знание коллоидов и белков возрастет, будущие инженеры смогут взяться за конструирование роботов, подобных тому или иному млекопитающему не только по поведению, но и по структуре. Окончательной моделью кошки может быть только другая кошка, рождена ли она еще от одной кошки или же синтезирована в лаборатории.

В нашей классификации поведения термин «телеология» употреблялся как синоним «целенаправленности, управляемой обратной связью». В прошлом телеологию толковали как нечто предполагающее цель и часто добавляли сюда смутное понятие «конечной причины». Это понятие конечных причин вызвало противопоставление телеологии и детерминизма. Обсуждение причинности, детерминизма и конечных причин не входит в нашу задачу. Можно отметить, однако, что целенаправленность, как она здесь была определена, совершенно не зависит от причинности, начальной или конечной. Телеология была дискредитирована главным образом потому, что при прежнем ее определении причина должна следовать во времени за действием. Однако с крушением этого аспекта телеологии было, к сожалению, отказано в признании и всякой целенаправленности. Мы видим в целенаправленности понятие, необходимое для познания некоторых определенных способов поведения, и считаем, что телеологический подход полезен, если только не касаться проблем причинности и довольствоваться исследованием целенаправленности как таковой. Мы ограничили содержание телеологического поведения, прилагая последнее наименование лишь к таким целенаправленным реакциям, которые управляются ошибкой реакции, т. е. разностью между состоянием [с.306] действующего объекта в данный момент и конечный состоянием, принимаемым за цель. Тем самым телеологическое поведение становится равнозначным поведению, управляемому отрицательной обратной связью, и, теряя соответственно в широте, выигрывает как понятие в точности.

Согласно этому узкому определению, телеология противоположна не детерминизму, а не-телеологии. Как телеологические, так и нетелеологические системы будут детерминистическими, коль скоро рассматриваемое поведение относится к области, где детерминизм вступает в силу. Понятие телеологии имеет с понятием причинности лишь один общий элемент — ось времени. Но причинность означает одностороннюю, относительно необратимую функциональную зависимость, тогда как телеология связана с поведением — не с функциональными зависимостями.

Гарвардская медицинская школа
и Массачусетсский технологический институт
[с.307]

^

Приложение II. Машина умнее своего создателя[209]

Норберт Винер

Последние десять лет были свидетелями появления нового взгляда на технику связи и на автоматы как устройства связи. Проделанную здесь работу можно уже разделить на два этапа. Первым из них был тот, на котором фигурировала моя собственная работа и на котором Клод Шеннон — один из наиболее оригинальных исследователей в этой области — направил усилия на прояснение самого понятия связи, на теорию и практику измерения связи, на анализ управления как явления по существу одной природы со связью и вообще на грамматику новой науки, которую я назвал кибернетикой.

Работа д-ра Эшби представляет раздел кибернетики, зародившийся еще на заре науки и посвященный не столько элементарным вопросам дефиниции и словаря, сколько тем вопросам философии предмета, которые затрагивают специфические свойства кибернетических систем и которые, хотя и связаны с определениями, являются вопросами фактов и логики и далеко выходят за рамки определений. [с.308]

К вопросам, исследуемым д-ром Эшби, принадлежат, в частности, следующие: что такое обучение? должна ли способность к обучению вкладываться в машину посредством некоторой весьма специфической организации или явления обучения может обнаруживать машина с организацией, в значительной мере случайной? может ли машина быть умнее своего создателя?

Все эти вопросы можно ставить в двух различных планах. В плане чисто биологическом подобные рассуждения занимали биологов с тех пор, как биология вышла из стадии чисто теологических обоснований; они касаются самой сущности проблем эволюции, особенно дарвиновской эволюции через естественный отбор. В плане механическом эти проблемы возникают по поводу гораздо более ограниченных машин, которые создает человек, и условий, которым он должен подчиняться, сознательно присваивая себе функции демиурга.

Машины, создаваемые человеком, и машины, создаваемые природой

Вполне признавая бо́льшую эффективность и приспособляемость структуры и действия природных машин по сравнению с машинами рукотворными, необходимо в то же время отметить, что эти вторые внесли в арсенал науки новое оружие как для естественного эксперимента, так и для мысленного. Роль их сходна с ролью плодовой мушки — дрозофилы. Последняя как будто была нарочно создана для того, чтобы превратить генетику из науки вековых наблюдений, какой она была бы неизбежно в случае ограничения наблюдениями над человеком и крупными домашними животными, в науку, совместимую с пространственными и временными ограничениями небольшой биологической лаборатории. Точно так же машины, созданные человеком, обещают свести наше изучение биологических процессов обучения и приспособления, индивидуального развития и эволюции к такому масштабу, при котором мы сможем разбирать эти зыбкие понятия с уверенностью и точностью, сравнимой с тем, что мы имеем в физической и технической лаборатории. Среди ученых, которые не [с.309] только говорят об этих вещах, но и действительно что-то делают, д-р Эшби занимает одно из ведущих мест.

Главная идея естественного отбора, примененная Дарвином к теории эволюции, заключается в том, что земная флора и фауна состоят из форм, которые дошли до нас просто как остаточные формы, а не в силу какого-либо прямого процесса стремления к совершенству. Это не кусок мрамора, превращающийся в совершенное изваяние под руками художника-творца, а скорее один из тех изваянных ветром столбов песчаника, которые украшают каньоны штата Юта. Случайные процессы эрозии, соединяясь, образовали эти каменные столбы, имеющие вид замков и памятников и даже фигур людей и животных. Но их красота и образность не такие, как красота и образность картины, а такие, как у роршаховских пятен, — иными словами, не для глаза художника, а для глаза зрителя. Подобно этому, кажущаяся теодицея, на которую намекает великолепие и разумность бесконечно сложного царства природы, представляет собой, согласно дарвинизму, лишь то, что осталось после случайного процесса роста и изменения, когда более мягкие и менее прочные проявления разрушились под действием песка времени и под бременем собственной слабости.

Устойчивость — характеристика мира

Природа располагает еще одним способом демонстрации остаточных форм, родственным естественному отбору, но с иным акцентом. Со времени открытий супругов Кюри мы знаем, что атомы некоторых элементов испытывают прогрессивный метаморфоз. Если взять атом радия, то рано или поздно с ним обязательно произойдет метаморфоз, при котором он начинает испускать радиевые эманации. Мы не может сказать, когда произойдет это превращение, ибо, по всей видимости, оно происходит случайно. Но мы можем сказать, что через некоторое время, называемое временем полураспада радия, вероятность того, что превращение произошло, будет равна одной второй.

Но радиоактивные элементы испытывают не [с.310] одно-единственное превращение, а целую серию последовательных превращений в другие элементы, и каждое из них имеет свое время полураспада. Про элементы с большим временем полураспада можно сказать, что они устойчивы, про элементы с малым временем полураспада — что они неустойчивы. Если проследить теперь какой-нибудь элемент в его превращениях, то, как правило, он будет существовать длительное время в виде элементов с большим периодом полураспада и короткое время — в виде элементов с малым периодом полураспада.

В результате, наблюдая процесс очень долго, мы найдем, что элементы с большим периодом полураспада встречаются чаще, чем элементы с малым периодом полураспада. Это значит, что исследование, исходящее из частоты наблюдаемых элементов и не прослеживающее судеб единичного атома, легко упускает высокорадиоактивные материалы с малым периодом полураспада. Отсюда мы видим, что устойчивость свойственна большей части мира. Таким образом, отсутствие неустойчивых форм, которое мы обнаруживаем в биологических рядах вследствие их неспособности выживать в борьбе за существование, наблюдается в эволюции радиоактивных элементов потому, что неустойчивые формы проходят столь быстро, что мы не замечаем их в той же степени, как замечаем формы более устойчивые.

Одним из следствий подобного статистического преобладания устойчивости во вселенной является то обстоятельство, что мы знаем очень мало о происходящем в критические периоды неустойчивости. Возьмем, например, хорошо известный эффект, открытый Артуром Комптоном: при столкновении фотона с электроном оба отскакивают в направлениях, которые определяются лишь статистически. Существует по меньшей мере подозрение, что на самом деле электрон и фотон, первоначально не соединенные, вступают здесь в соединение на слишком короткий промежуток времени, чтобы мы могли определить действительный ход событий, и что затем они выходят из этого соединения через все более слабые соединения, каждое из которых протекает по-своему. Некоторые физики, например Вом, высказывали предположение, что действительный ход [с.311] событий не является столь неопределенным, но что в течение того ничтожного промежутка времени, когда частицы находятся вместе, имеет место очень сложная последовательность событий, определяющая их дальнейшее поведение. Если это верно, то значительная часть важнейших физических явлений нам не известна, ибо мы проходим сквозь них слишком быстро и не умеем их регистрировать.

Из этих двух видов естественного отбора: через разрушение непригодного и через слишком поспешное прохождение по неустойчивому — последний есть единственно возможный при явлениях сохранения, препятствующих простому устранению неустойчивого. Эшби рассматривает весьма сложные машины, в которых элементы соединены между собой более или менее случайным образом, так что мы знаем кое-что о статистике соединений и очень мало о деталях таковых. Машины эти, вообще говоря, разрушаются очень быстро, если не вводить в них предохранительных элементов, наподобие амплитудных ограничителей в электрических схемах. Действие таких ограничителей придает системе некоторую консервативность. Поэтому машины Эшби стремятся проводить бо́льшую часть своего существования в относительно устойчивых состояниях, а их неустойчивые состояния, хотя и существуют, но так ограничены во времени, что очень мало проявляются при статистическом изучении системы.

Следует помнить, что в явлениях жизни и поведения нас интересуют относительно устойчивые, а не абсолютно устойчивые состояния. Абсолютная устойчивость достижима лишь при очень больших значениях энтропии и по существу равносильна тепловой смерти. Если же система ограждена от тепловой смерти условиями, которым она подчинена, то она будет проводить большую часть своего существования в состояниях, которые не являются состояниями полного равновесия, но подобны равновесным. Иными словами, энтропия здесь не абсолютный, а относительный максимум или, по крайней мере, изменяется очень медленно в окрестностях данных состояний. Именно такие квазиравновесные — не истинно равновесные — состояния связаны с жизнью и мышлением и со всеми другими органическими процессами. [с.312]

Машины с глазами и ушами?

Мне кажется, будет вполне в духе д-ра Эшби сказать, что эти квазиравновесные состояния, как правило, суть состояния, при которых имеет место относительно слабый обмен энергией между системой и окружающей средой, но зато относительно большая информационная связь между ними. Системы, рассматриваемые д-ром Эшби, имеют глаза и уши и таким путем получают сведения для приспособления ко внешней среде. Они приближаются к автоматам по своему внутреннему энергетическому балансу, но очень далеки от них по своему внешнему энтропийному, или информационному балансу. Поэтому равновесие, к которому они стремятся, — это равновесие, при котором они хорошо приспособлены к изменениям во внешней среде и в известной степени нечувствительны к таким изменениям. Они находятся в состоянии частичного гомеостаза.

Д-р Эшби конструирует свой гомеостат как прибор, имеющий именно такую связь со внешней средой и обнаруживающий некоторую случайность во внутреннем строении. Такая машина в известной степени может обучаться, т. е. приспособляться формами своего поведения к устойчивому равновесию с окружением. Однако реальные гомеостаты, разработанные пока д-ром Эшби, хотя и способны поглощать информацию из окружения, содержат в своем внутреннем строении количество информации и решений, заведомо превосходящее то, которое проходит через их, так сказать, органы чувств. Короче говоря, эти машины могут обучаться, но они отнюдь не умнее своих создателей или примерно столь же умны. Тем не менее д-р Эшби полагает, что можно действительно создать машины, которые были бы умнее своих создателей; и в этом я с ним совершенно согласен. Количество информации, которое может воспринимать через свои органы чувств прибор, нельзя априори ограничивать теми значениями, при которых требуется не больше решений, чем уже было заложено в структуру прибора. Обыкновенно способность системы поглощать информацию растет на первых порах довольно медленно по сравнению с количеством информации, заложенной в нее. И лишь после того, как заложенная информация перейдет за некоторую точку, [с.313] способность машины поглощать дальнейшую информацию начнет догонять внутреннюю информацию ее структуры. Но при некоторой степени сложности приобретенная информация может не только сравняться с той, которая была первоначально заложена в машину, но и далеко ее превзойти, и с этой стадии сложности машина приобретает некоторые из существенных характеристик живого существа.

Необходима сложность

Рассматриваемая ситуация допускает любопытное сравнение с атомной бомбой, с атомным реактором или с огнем в очаге. Если вы попытаетесь построить атомный реактор или атомную бомбу слишком малых размеров или зажечь большое дубовое полено одной спичкой, вы убедитесь, что всякая запущенная вами атомная или химическая реакция угаснет, как только будет удален ее возбудитель, и никогда не будет расти или оставаться на одном уровне. Лишь когда воспламенитель достигнет определенной величины, или в атомном реакторе соберется определенное количество молекул, или масса изотопа урана достигнет определенного взрывного размера, положение изменится, и мы увидим не только мимолетные и неполные процессы. Точно так же действительно существенные и активные явления жизни и обучения начинаются лишь после того, как организм достигнет некоторой критической ступени сложности; и хотя эта сложность, вероятно, достижима при помощи чисто механических, не слишком трудных средств, тем не менее потребуется предельное их напряжение.

Из этого разбора, посвященного лишь некоторым идеям книги д-ра Эшби, можно заключить, что она открывает нам широкий взгляд на новые рубежи мысли. Д-р Эшби, хотя в сущности и обладает сильным математическим воображением, не является в полном смысле профессиональным математиком, и профессиональным математикам надлежит осуществить многие из набросанных им идей. Он не причисляет себя к профессиональным математикам, но он, несомненно, обладает принципиальностью и талантом, и книгу его надо читать как одни из первых плодов на ниве, заслуживающей усердного возделывания. [с.314]

^

Приложение III. Кибернетика и человек[210] (Интервью для советского журнала «Природа»)

Вопрос. Каково Ваше мнение относительно возможности развития математики при помощи машин? Можем ли мы ожидать, что таким путем будут открыты новые теоремы или созданы новые доказательства уже существующих?

Ответ. В настоящее время уже созданы такие машины, которые не только производят сложные вычислительные операции, но также способны проверять и исправлять программу, составленную для этих машин. Можно поэтому сказать, что такие машины, в прямом смысле этого слова, сами себя обучают. Ныне идет работа по созданию таких машин, которые имеют возможность сами открывать новые теоремы из области геометрии или логики. В таком направлении работает, например, д-р Соломон из фирмы ИБМ. Принцип действия таких машин заключается в том, что различные доказательства связываются между собой на основе некоторых заранее установленных критериев. Машина сохраняет только те доказательства, которые этим критериям лучше других соответствуют, и отбрасывает все остальные. Здесь возникает важная проблема, которая интересна с философской стороны. А именно: какое [с.315] соотношение существует между индуктивной и дедуктивной логикой?

Обычно новые теоремы или новые доказательства известных теорем сначала формулируются индуктивным путем, а затем доказываются строго логически, т. е. дедуктивно. В этом направлении работает известный японский математик Ватанабе. Он исходит из общих гипотез, справедливость которых может быть оценена при помощи чисел. Применяя этот метод, Ватанабе в состоянии, сравнивая гипотезы, выбрать те, которые соответствуют данному предположению и которые справедливы также в других аналогичных случаях. Данная ситуация очень похожа на ту, которая возникает при определении оптимальной стратегии в теории игр.

Тут появляется то парадоксальное обстоятельство, что, применяя в этих целях вычислительные машины, мы решает проблемы индуктивной логики при помощи дедуктивной. Этот метод очень важен потому, что он дает нам представление о том, как у человека происходит процесс индукции. Обычно принимается, что индукция по существу состоит в выборе правильного результата из бесконечного числа возможностей. Однако на практике оказывается, что выбор ограничивается только конечным числом возможностей и, что самое удивительное, это число очень мало. Осознание данного факта имеет большое практическое значение.

Вопрос. Известно, что у живых организмов существуют функции, которые с успехом используются в технических устройствах, например принцип обратной связи в автоматике. Каково Ваше мнение, есть ли еще какие-нибудь принципы такого рода?

Ответ. Наши нынешние автоматические машины отличаются тем, что они могут правильно работать лишь в том случае, если они получают от человека необходимую им информацию и в самой точной форме. Это означает, что характер информации, вводимой в машину, в общем смысле должен быть точно и заранее известен человеку. Живые организмы, наоборот, развивают необходимую им информацию благодаря постоянному взаимодействию с природой. Это означает, что возникновение информации в живых организмах есть исторически развивающийся процесс. Мне бы хотелось еще раз подчеркнуть, что речь здесь идет именно о [с.316] взаимодействии и обмене с окружающей средой. Можно сказать, что живые организмы сами себя организуют. Как уже было показано в моих работах, о которых я рассказывал на докладе в Политехническом музее в Москве, такие явления самоорганизации имеют место и в технических устройствах. Примером могут служить электрические генераторы, имеющие несколько различных частот; будучи укрепленными на одной оси, они автоматически принуждаются генерировать на вполне определенной резонансной частоте.

Как показал недавно состоявшийся в Москве I конгресс ИФАК, человек в настоящее время уже в состоянии конструировать такие самоорганизующиеся машины. Это представляет собой новую главу в истории техники.

Вопрос. Успехи кибернетики настолько значительны, что в последнее время появились суждения о том, что машина якобы может полностью заменить человека. Каково Ваше мнение по этой проблеме?

Ответ. Различие между человеком и машиной, прежде всего, заключается в том, что в организме человека число элементов по порядку величин во много раз больше, чем обладает машина. Из этого непосредственно вытекает, что организация элементов в организме настолько сложна, что при помощи наших современных логических средств мы не можем еще овладеть этой сложностью. Я бы даже не решился сейчас дать определение понятия «сложность».

Помимо этого количественного различия, существует еще качественное отличие. Преимущество человека состоит в его гибкости, в его умении работать с неточными идеями. Это означает, что человек обладает фантазией, другими словами, он создает понятие. Преимущества машин — в скорости и точности.

В некоторых странах, в том числе в США, заметна тенденция к «обожествлению» машин, к попытке приписать им такие возможности, которыми они в действительности не обладают. В этом заключается большая опасность.

Далее, наши машины нуждаются в программах. Эти программы могут, правда, быть составлены другими машинами, однако для этих машин программу должен опять-таки составить человек. Данную мысль можно [с.317] продолжить — это означает, что подвижна сама граница между машиной и организмом, и ответ на вопрос, какой сложности могут быть построены машины, даст только опыт.

Однако при конструировании новых машин мы всегда должны сознавать, какие возможны последствия от их применения. Программы для этих машин должны быть всегда заранее точно определены, в противном случае могут быть не только положительные, но и вредные последствия. Если последствия не будут точно известны, то может произойти то, о чем говорится в известной английской сказке, которую я обычно при рассмотрении этого вопроса привожу. Один человек стал обладателем талисмана, с помощью которого могло быть выполнено любое его желание. Однако какой ценой он должен был заплатить за такое благо, было ему неизвестно. Когда он однажды получил с помощью своего талисмана большую сумму денег, то оказалось, что он должен был за это пожертвовать жизнью любимого сына…

Исполнение желания имеет свои хорошие и дурные последствия. То же относится и к новым автоматам. Применение их может иметь либо хорошие, либо плохие результаты. Какие именно получатся — это зависит от людей.

Вопрос. Какими физиологическими проблемами Вы интересуетесь в настоящее время?

Ответ. Сейчас я занимаюсь проблемой: как можно теоретически осмыслить способности гена или вируса к воспроизведению. Я надеюсь, что по этим вопросам смогу поговорить с моими коллегами в Москве.

Вопрос. В заключение мы хотели бы спросить, каковы Ваши впечатления от Москвы и конгресса?

Ответ. Я получил много хороших впечатлений от города, от успехов советских людей. Конгресс показал, что советские ученые играют значительную роль в области автоматического регулирования. Я уверен, что сотрудничество ученых различных стран приведет к еще большим успехам в деле мира и взаимопонимания на благо человечества. [с.318]

^

Приложение IV. Машины изобретательнее людей?[211] (Интервью для журнала «Юнайтед Стэйтс Ньюс энд Уорлд Рипорт»)

Вопрос. Д-р Винер, существует ли опасность, что машины — вычислительные машины — когда-нибудь возьмут верх над людьми?

Ответ. Такая опасность, несомненно, существует, если мы не усвоим реалистического взгляда на вещи. Собственно говоря, это опасность умственной лени. Некоторые так сбиты с толку словом «машина», что не представляют себе, что можно и чего нельзя делать с машинами и что можно и чего нельзя оставить человеку.

Вопрос. Существует ли тенденция придавать чрезмерное значение применению вычислительных машин?

Ответ. Существует культ техники. Люди заворожены техникой. Машины предназначены для службы человеку, и если человек предпочитает передать весь вопрос о способе их употребления машине, из-за слепого машинопоклонства или из-за нежелания принимать решения (назовете ли вы это леностью или трусостью), тогда мы сами напрашиваемся на неприятности.

Вопрос. Согласны ли Вы с прогнозом, который мы иногда слышим, что дело идет к созданию машин, которые будут изобретательнее человека?

Ответ. Осмелюсь сказать, что если человек не изобретательнее машины, то уже слишком плохо. Но здесь нет убийства нас машиной. Здесь просто самоубийство.

Вопрос. Действительно ли машины обнаруживают тенденцию становиться сложнее, изобретательнее? [с.319]

Ответ. Мы делаем сейчас гораздо более сложные машины и собираемся в ближайшие годы делать еще более сложные. Есть вещи, которые совсем пока не дошли до общественного внимания, вещи, которые заставляют многих из нас думать, что это случится не позже, чем через какие-нибудь десять лет.

Вопрос. Можете ли Вы дать нам взглянуть в будущее?

Ответ. Могу. Одним из важных событий была миниатюризация — уменьшение размеров деталей. Там, где в самом начале развития вычислительной техники понадобилась бы машина величиной с Эмпайр-Стэйтс-Билдинг[212], теперь вы можете обойтись конструкцией, которая поместится в довольно небольшой комнате. Одним из главных факторов в этой миниатюризации было введение новых типов памяти — памяти, основанной на физике твердого тела, на транзисторах и т. п.

Сейчас возник интерес к вопросу, как работает человеческий мозг. И за последний примерно год мы впервые получаем настоящее представление об этом.

Видите ли, генетическая память — память наших генов — в значительной степени зависит от веществ, являющихся комплексами нуклеиновых кислот. В последнем году стали подозревать более или менее широко, что память нервной системы — того же рода. На это указывает открытие комплексов нуклеиновых кислот в мозгу и тот факт, что они обладают свойствами, обеспечивающими хорошее запоминание. Это весьма тонкий раздел физики твердого тела, как и физика, ныне используемая в машинной памяти.

Я предполагаю — и я не одинок, — что ближайшее десятилетие увидит это в техническом воплощении.

Вопрос. Иными словами, вместо магнитной ленты как элемента памяти вычислительной машины Вы будете располагать генами?

Ответ. Мы будем располагать веществами, родственными генам. Называть их генами или нет, вопрос терминологический, но вещества — того же рода. Это вызовет массу новых фундаментальных исследований. Как вводить в эту генетическую память и выводить из нее данные, как ее использовать, — все это требует [с.320] большой исследовательской работы, пока едва начатой. Некоторые из нас имеют предчувствия (еще не проверенные), что ввод и вывод осуществимы посредством световых колебаний определенных молекулярных спектров. Так ли это или не так, я бы не поклялся. Но кое-кто из нас смотрит на это серьезно.

Вопрос. Не будет ли пугать народ такая перспектива?

Ответ. Любая перспективная возможность будет пугать народ. Она будет пугать народ, если ее использовать без понимания. Использованная же с пониманием, она может оказаться весьма ценным орудием.

Вопрос. Можете ли Вы описать вычислительную машину, использующую гены как запоминающее устройство? Что было бы для нее возможно?

Ответ. Слишком похоже на фантастику, чтобы говорить сейчас.

Вопрос. Каковы бы были возможности подобной машины по сравнению с вычислительными машинами, которыми мы располагаем сегодня?

Ответ. Они могут оказаться несравненно бо́льшими. Машина могла бы быть гораздо меньше; она могла бы пропускать гораздо больше данных. Но все, что я сказал бы о ней, было бы не только преждевременным, но и безнадежно преждевременным. Однако работа в этих областях должна проводиться, я уверен.

Вопрос. Говорят, что вычислительные машины думают. Так ли это?

Ответ. Если иметь в виду нынешнее положение вещей, то вычислительные машины могут обучаться. Вычислительные машины могут учиться улучшать свою работу путем ее анализа. Это, безусловно, верно. Называть ли это мышлением, вопрос терминологический. Что вещи такого рода получат гораздо большее развитие в будущем, когда наша способность строить более сложные вычислительные машины возрастет, в этом, я думаю, не приходится сомневаться.

Вопрос. Существует ли вероятность, что машины могут учиться больше, чем человек? Способны ли они к этому сейчас?

Ответ. Сейчас наверняка нет, и наверняка нет еще долгое время, если вообще когда-либо будут способны. Но если смогут, то лишь потому, что мы перестанем [с.321] учиться. Я хочу сказать, что намучиться легче, чем машине. Если же мы поклоняемся машине и все ей оставляем, то мы должны благодарить самих себя за все неприятности, в которые попадаем.

В этом суть дела. Вычислительная машина очень хороша при быстрой работе, проводимой однозначным образом над полностью представленными данными. Вычислительная машина не может сравниться с человеческим существом при обработке еще не выкристаллизовавшихся данных. Если назвать это интуицией, то я не сказал бы, что интуиция недоступна вычислительной машине, но у нее она меньше, а экономически невыгодно заставлять машину делать то, что человек делает намного лучше.

Вопрос. Что именно представляет собой обучающаяся машина?

Ответ. Обучающаяся машина — это такая машина, которая не просто, скажем, играет в какую-нибудь игру по твердым правилам, с неизменной стратегией, но периодически или непрерывно рассматривает результаты этой стратегии, дабы определить, нельзя ли изменить с пользой те или иные параметры, те или иные величины в стратегии.

Вопрос. Пример, который всегда приходит на ум, — машины, играющие в шашки…

Ответ. Прекрасно, возьмем шашки. Машина была достаточно хороша, чтобы через некоторое время стать способной систематически обыгрывать своего изобретателя, пока тот не выучил про шашки немного больше.

Вопрос. Почему же с шахматами не так?

Ответ. Потому что шахматы сложнее. С шахматами тоже будет так, но это потребует гораздо более длительной работы.

Вопрос. Обучаются ли машины письму?

Ответ. Да. Имеются машины, способные воспринять код и перевести его в рукописный шрифт или воспринять рукописный, а также печатный шрифт и перевести его в код. О да! Это разрабатывается: можно даже воспринять речь и перевести ее в код.

Вопрос. Говорить о думающих роботах, захватывающих власть над Землей, — фантастика?

Ответ. Фантастика, если только народ не придет к идее: «Оставим все Железному Майку!» Я хочу [с.322] сказать: если мы смотрим на машину не как на дополнение к нашим силам, а как на нечто их расширяющее, мы должны держать ее под контролем. Иначе нельзя. Машинопоклонники, ожидающие, что машина будет работать, а народ пусть сидит и получает все без труда, думают, конечно, по-другому.

Вопрос. Разумно ли используются сегодня вычислительные машины?

Ответ. В 10% случаев — да.

Вопрос. Поразительно низкая цифра. Почему Вы так говорите?

Ответ. Потому что нужен разум, чтобы знать, что давать машине. И во многих случаях машина используется в расчете на разум, которого-то и нет.

Вычислительная машина ценна ровно настолько, насколько ценен использующий ее человек. Она может позволить ему продвинуться дальше за то же самое время. Но он обязан иметь идеи. И на ранней стадии проверки идей вам не следует быть зависимым от вычислительных машин.

Вопрос. Относится ли это также к применению вычислительных машин как средства автоматизации? Иными словами, не используется ли автоматизация в некоторых случаях неразумно?

Ответ. Вне всякого сомнения. Однако, что касается примера, сие не моя область.

Вопрос. Какие можно назвать работы, для которых машины могут применяться разумно и которые они делают лучше, чем люди?

Ответ. Бухгалтерию, продажу билетов и тому подобное ведение записей. Когда мы составили свой план вычислений, машина может выполнить его гораздо лучше, чем человек. И вычислительные машины будущего смогут делать эти вещи еще лучше. Они будут обладать достаточной разносторонностью, чтобы позволить себе то, что делает мозг, — затрачивать массу усилий и все-таки достигать чего-то.

Вопрос. Эти машины будущего отнимут еще много занятий у людей?

Ответ. Отнимут.

Вопрос. Это обострит проблему, которая уже существует. Где же решение?

Ответ. Ответ гласит: мы больше не можем [с.323] оценивать человека по той работе, которую он выполняет. Мы должны оценивать его как человека.

В этом суть. Вся уйма работы, для которой мы сейчас используем людей, — это работа, в действительности делаемая лучше машинами. Ведь уже давно человеческая энергия стоит немного, поскольку речь идет о физической энергии. Сегодня человек, пожалуй, не смог бы произвести столько энергии, чтобы купить пищу для своего собственного тела.

Реальная коммерческая стоимость его услуг в условиях современной культуры недостаточна. Если мы оцениваем людей, мы не можем оценивать их на этой основе. Если мы настаиваем на применении машин повсюду, безотносительно к людям, но не переходим к самым фундаментальным рассмотрениям и не даем человеческим существам надлежащего места в мире, мы погибли.

Вопрос. Уже поздно остановить это движение ко все большей и большей автоматизации?

Ответ. То, что сделано, непоправимо. Я предвидел это в самом начале. Здесь налицо не просто факт, что используются вычислительные машины. Настоящую трудность представляет факт, что они стоят наготове для применения.

Иными словами, причина, по которой нам нельзя идти назад, заключена в том, что нам никогда не удастся уничтожить возможность использования вычислительных машин.

Вопрос. Вы считаете это необратимой тенденцией?

Ответ. Я не говорю даже о тенденции. Это необратимое приращение знания. Такое случилось с Адамом и Евой, когда они повстречались со змеем. Коль скоро вы вкусили от древа познания, вы вряд ли сможете сделать другое, чем идти дальше с этим знанием.

Вопрос. Итак, можно ожидать, что машины будут играть все большую роль в автоматизации, в бизнесе, в образовании…

Ответ. Можно. И во всяком случае, используем ли мы машины или нет (решение, которое мы так или иначе должны принять), тот факт, что они имеются налицо для использования, нельзя отбросить.

Вопрос. Вы хотите сказать, что более мудрым [с.324] решением был бы, возможно, отказ от использования некоторых машин?

Ответ. В определенных ситуациях это может оказаться более мудрым. Приведу вам пример. Сейчас с автоматизацией совсем нетрудно построить фабрику, способную произвести больше, чем может потребить весь рынок. Если вы беретесь за дело и лишь толкаете производство вверх, вы можете упереться в потолок. Конкуренция, как она понималась в прошлом, существенно изменяется при наличии автоматизации. Автоматизация больше несовместима с laissez faire[213].

Вопрос. Если в ближайшее десятилетие разовьется новая техника такого типа, на который Вы намекали, как можно задержать дальнейшую автоматизацию?

Ответ. Прогресс задерживали в прошлом не раз. Совсем не обязательно, если мы делаем новое оружие, немедленно пускать его в ход.

Вопрос. Вы нашли во время Вашей последней поездки в Россию, что Советы придают большое значение вычислительной машине?

Ответ. Я скажу вам, насколько большое. У них есть институт в Москве. У них есть институт в Киеве. У них есть институт в Ленинграде. У них есть институт в Ереване в Армении, в Тифлисе, в Самарканде, в Ташкенте и Новосибирске. У них могут быть и другие.

Вопрос. Используют ли они эту область науки полностью, если сравнить с нами?

Ответ. Общее мнение — и оно идет от самых разных лиц — таково, что они отстают от нас в аппаратуре: не безнадежно, а немного. Они впереди нас в разработке теория автоматизации.

Вопрос. Д-р Винер, необходимо ли сегодня использование вычислительных машин для военных решений?

Ответ. Да, и они могут быть использованы весьма неразумно. Я не сомневаюсь, что проблема того, когда нажать «большую кнопку», трактуется сейчас с точки зрения обучающихся машин. Я был бы очень удивлен, если бы дело обстояло иначе, ведь это ходовые идеи. Вы знаете: «Пусть делает Железный Майк!»

Но давайте рассмотрим это чуть поподробнее. Как [с.325] учатся солдаты своему ремеслу? Посредством военных игр. Веками они упражнялись в играх на карте. Прекрасно! Если вы располагаете некоторым формальным критерием, определяющим, что значит выиграть войну, вы можете заниматься такими играми. Но вам не мешало бы удостовериться, что ваш критерий есть то, что вы действительно хотите, а не некая формализация желаемого. В противном случае вы можете создать вычислительную машину для ядерной войны, которая все разрушит.

Вопрос. Как можно программировать вычислительную машину для ядерной войны, если Вы никогда не имели настоящего опыта подобной войны?

Ответ. Совершенно нельзя. Но тем не менее это сейчас пытаются делать. Экспертов по атомной войне нет. Эксперт — это человек, обладающий опытом. Такого человека сегодня мы не имеем. Поэтому программирование военных игр на основании искусственных критериев успеха в высшей степени опасно и может кончиться плохо.

Вопрос. Существует ли тенденция к программированию такого рода?

Ответ. Тенденция в этом направлении существует, и эта глупость верхов меня поражает. Автомат обладает свойством, которым некогда наделяли магию. Он может дать вам то, что вы просите, но не скажет вам, чего просить.

Мы слышали речи, что нам нужно создать машинные системы, которые скажут нам, когда нажать кнопку. Но нам нужны системы, которые скажут нам, что случится, если мы будем нажимать кнопку в самых разных обстоятельствах, и — главное — скажут нам, когда не нажимать кнопки!

Вопрос. Как Вы думаете, возможно ли для машин объявить войну и обречь все человечество?

Ответ. Если мы позволим им. Разумеется, они не объявят войны, если мы заранее не настроим их на это.

Вопрос. Д-р Винер, не изменяет ли человек окружающую среду свыше своей способности приспособления к ней?

Ответ. Это вопрос № 1. Человек, несомненно, изменяет ее чрезвычайно сильно, а делает ли он это свыше своей способности, мы узнаем довольно скоро. Или не узнаем — нас больше не будет. [с.326]



204. Rosenbluelh А., Wiener N., Bigelow J. Behavior, Purpose and Teleology. // Philosophy of Science. — Baltimore, 1943. — Vol. 10. — № 1. — Р. 18—24.

205. От англ. behavior — «поведение». Напрашивается сопоставление с бихевиоризмом в психологии (Дж. Б. Уотсон и др.), однако по существу речь идет о самостоятельном, отдельном направлении. Насколько можно судить, авторы не применяют специфических положений школы Уотсона и не отрицают, подобно ему, психики и сознания. Впрочем, в современной зарубежной литературе термин «бихевиоризм» употребляется и просто как название науки о поведении. — Прим. ред.

206. Операциональное определение понятия — определение, допускающее точную проверку через эксперименты или измерение. — Прим. ред.

207. «Мандаринский язык» — старое название северного (пекинского) диалекта китайского языка. — Прим. ред.

208. Позже, в связи с исследованием альфа-ритма, Винер пришел к мысли о наличии в зрительном механизме мозга групповой развертки («Кибернетика», гл. VII). — Прим. ред.

209. Wiener N. A Machine Wiser Than Its Maker. // Electronics. — 1953. — Vol. 26. — № 6. — Р. 368—374. Этот этюд Винера является откликом на книгу английского ученого У.Р. Эшби «Конструкция мозга», вышедшую в 1952 г. и составившую важный этап в формировании кибернетики (Ashby W.R. Design for a Brain. — New York: John Wiley & Sons, 1952; русский перевод со 2-го англ. изд.: Эшби У.Р. Конструкция мозга. — М.: ИЛ, 1962). Впоследствии Эшби написал «Введение в кибернетику» (Ashby W.R. An Introduction to Cybernetics. — London: Chapman & Hall, 1956; русский перевод: Эшби У.Р. Введение в кибернетику. — М.: ИЛ, 1958).— Прим. ред.

210. См.: Природа. — 1960. — № 8. — С. 68—69, в разделе «Наши интервью». Летом 1960 г. в Москве состоялся I конгресс Международной федерации по автоматическому управлению (International Federation of Automatic Control, отсюда сокращение ИФАК), в котором принимали участке ученые из многих стран. В числе американских делегатов был и Норберт Винер. Во время своего пребывания в Москве Винер дал ряд интервью, в частности настоящее интервью сотруднику журнала «Природа». — Прим. ред.

211. Machines Smarter than Men? Interview with Dr. Norbert Wiener, Noted Scientist, // U.S. News & World Report. — 1964. — Feb. 24. — P. 84-86.

212. 102-этажный нью-йоркский небоскреб — одно из высочайших зданий Америки (381 м.) — Прим. ред.

213. Laissez faire (франц.) — невмешательство, свобода рынка (лозунг старой буржуазной политэкономии). — Прим. ред.

<<< |1|2|3|4|5|6| >>>
Комментарии: 0