x, y, z

Поиск > Публикации: теория_матриц

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 2
ПубликацияРазделКомм.
Алексей Белов
Общая постановка такова. Пусть P(x_1,…,x_n) — некоммутативный многочлен от матриц порядка n. Каким может быть множество его значений? И. Капланский и И. В. Львов поставили вопрос о том, что множество значений полилинейного многочлена есть векторное пространство (в этом случае оно совпадает либо с нулем, либо с пространством всех матриц, либо с пространством бесследовых матриц, либо со скалярными матрицами). Решение проблемы Капланского для матриц второго порядка над квадратично замкнутым полем оказалось весьма нетривиальным и глубоким. Вопросы, связанные с уравнениями в матрицах, помимо прикладного значения имеют отношение к конструкции алгебраически замкнутого тела, к теореме о свободе: если добавить новую некоммутативную переменную и соотношение, где та участвует, то это не приведет к появлению новых соотношений. Имеется ряд глубоких проблем, относящихся к множеству значений слов в группе — в частности, в матрицах второго порядка.
Математика ≫ Видео 0 Ø
Иван Оселедец
Возможно ли в линейной алгебре получение новых результатов? Почему в университетах этот курс учат неправильно? Какое матричное разложение является самым важным? Об умножении матрицы на вектор, быстрых алгоритмах и сингулярном разложении. рассказывает доктор физико-математических наук Иван Оселедец.
Математика ≫ Видео 0 Ø