x, y, z

Поиск > Публикации: теория_информации

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 6
ПубликацияРазделКомм.
Андрей Соболевский
В 1948 году американский математик Клод Шеннон опубликовал статью «Математическая теория информации». Тогда, 70 лет назад, эта работа легла в основу современной теории информации и принесла ученому мировую славу. А математика с тех пор стала влиять на жизнь людей в реальном, а не отложенном времени. О том, где сегодня лежит граница между полезной и бесполезной математикой, мы решили спросить директора Института проблем передачи информации имени Харкевича Российской академии наук Андрея Соболевского.
Математика ≫ Видео 0 Ø
Владимир Тихомиров
Энтропия — мера неопределённости, мера хаоса. В естественных науках это мера беспорядка системы, состоящей из многих элементов; в теории информации — мера неопределённости какого-либо опыта, процесса или испытания, которые могут иметь разные исходы (а значит, мера количества информации); в математике — мера сложности объекта или процесса. Понятие энтропии было впервые введено в 1865 году Р. Клаузиусом в термодинамике, К. Шенноном в теории информации в 1949 г., в теории стохастичпеских процессов Колмогоровым, Гельфандом и Яглом в 1956 г., в функциональном анализе и теории динамических систем Колмогоровым в 1956–1958 гг. Между мирами полной детерминированности, изучаемой классическим анализом и миром хаоса, изучаемым теорией вероятностей, ныне перекидывается мост, который связан с понятием энтропии.
Математика ≫ Видео 0 Ø
Алексей Сосинский
В алгоритмической теории информации колмогоровская сложность объекта (такого, как текст) есть мера вычислительных ресурсов, необходимых для точного определения этого объекта. Колмогоровская сложность также известна как описательная сложность, сложность Колмогорова — Хайтина, стохастическая сложность, алгоритмическая энтропия или алгоритмическая сложность.
Математика ≫ Видео 0 Ø
Владимир Потапов
Теория информации — математическая дисциплина, в которой одновременно применяются методы многих разделов математики: теории вероятностей, теории алгоритмов, комбинаторики. Она занимается, в числе прочих, вопросами — как лучше всего сжать файл? Сколько информации может содержать данное сообщение? Как возможно точно передать сообщение, несмотря на помехи в канале связи? Как защитить сообщение от несанкционированного доступа? Ключевые идеи о том как решать перечисленные задачи были изложены в статье К. Шеннона «Математическая теория информации», где впервые было введено понятие энтропии (количества информации) и намечены контуры будущей теории. Мы займёмся введением в теорию сжатия дискретных данных (в отличие от непрерывных; там — своя специфика). Рассмотрим несколько алгоритмов, которые применяются в универсальных архиваторах (zip, rar). А также сделаем первые шаги (определим понятия и докажем начальные теоремы) на пути, ведущем к теоретическому обоснованию эффективности этих алгоритмов.
Математика ≫ Видео 0 Ø
Иван Аржанцев
Теория кодирования – это отличный повод поговорить о красивых задачах из алгебры и комбинаторики, о линейной алгебре и алгебраической геометрии над конечными полями, конечных геометриях, простых группах и алгоритмах, связанных с передачей информации. Программа курса: Основные задачи теория кодирования. Коды, исправляющие ошибки. Расстояние Хемминга и неравенство треугольника. Предварительные сведения из алгебры. Строение конечных полей. Линейная алгебра над конечными полями. Линейные коды и их характеристики. Код Хемминга. Совершенные коды. Двойственный код и тождество Мак-Вильямса. Эквивалентность кодов. Методы вычисления минимального расстояния для подпространства. Циклические коды и главные идеалы. Алгеброгеометрические коды. Грассманианы и плюккеровы координаты. Грассмановы коды и минимальные расстояния. Точки на минимальной сфере. Алгоритмы декодирования. Синдромы и минимальные представители. Коды Голея. Конечные геометрии и группы Матье.
Математика ≫ Видео 0 Ø
Николай Чурсин
Для того чтобы применить математические средства для изучения информации, потребовалось отвлечься от смысла, содержания информации. Этот подход был общим для упомянутых нами исследователей, так как чистая математика оперирует с количественными соотношениями, не вдаваясь в физическую природу тех объектов, за которыми стоят соотношения.
Информатика, компьютерные науки 0 Ø