x, y, z

Поиск > Публикации: основания_математики

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 62
|1|2|3|4| >>>
ПубликацияРазделКомм.
Отрывок из книги книга Дэвида Дарлинга и Агниджо Банерджи «Эта странная Математика — на краю бесконечности и за ним» о том, как Гедель доказал существование Бога и почему пифагорейцы утопили математика Гиппаса.
Математика 0 Ø
Veritasium
Возможно ли доказать всё, что истинно? Поиски ответа на этот вопрос раскололи математическое сообщество, заставили нас пересмотреть своё представление о бесконечности, помогли выиграть Вторую мировую войну и создать устройство, на котором вы посмотрите это видео. Как именно, расскажет Дерек Маллер в новом видео от Veritasium.
Математика ≫ Видео 0 Ø
Макар Светлый
Потенциальная и актуальная бесконечность. Наивная теория множеств Кантора. Мощность. Парадоксы теории множеств. Интуиционизм, логицизм, формализм. Теория доказательств. Программа Гильберта. Аксиоматики ZFC, ZFD, NBG. Полнота и непротиворечивость формальных систем, теоремы Геделя. Современное состояние оснований математики.
Математика ≫ Видео 0 Ø
Валерий Опойцев
Комплексные числа: Как возникают и что обеспечивают. Как введение «странных» объектов проливает свет на реальные проблемы. Теория вещественных чисел: Пополнение прямой. Сечения Дедекинда. Зачем это нужно. Системы счисления: Что говорил Плутарх. Позиционная запись чисел. Десятичная система, двоичная. Игра «Ним» на шахматной доске. Двоичный выигрывающий алгоритм. Множества и операции: Наивная теория множеств. Сходство и различия с арифметическими операциями. Булевы структуры. Какими моделями их можно наполнять. Как эти модели перекликаются. Математическая индукция: Аксиома Пеано. Механизм индукции. Примеры.
Математика ≫ Видео 0 Ø
Лев Беклемишев
Вычислимая функция f:N→N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение «для любого x существует y такой, что f(x)=y». В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения различных формальных теорий. Такой подход приводит к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений. Мы начнем с понятия машины Тьюринга и вычислимой функции. Разберемся, как формальная арифметика может говорить о вычислениях. Поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда выведем первую теорему Гёделя о неполноте.
Математика ≫ Видео 0 Ø
Лев Беклемишев
Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Математик Лев Беклемишев о теории множеств, интерактивных системах и проблеме о четырех красок.
Математика ≫ Видео 0 Ø
Беклемишев Лев
В чем заключается аксиоматический метод? Как развивалось понятие аксиомы? Кем был разработан аксиоматический метод? Какое место он занимает в математике? И какой критике подвергается этот метод? Математик Лев Беклемишев о неевклидовой геометрии, системе аксиом Гильберта и смысле в математике.
Математика ≫ Видео 0 Ø
Почему минус один умножить на минус один равно плюс один? Почему минус один умножить на плюс один равно минус один? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики.
Математика 0 Ø
Александр Буфетов
В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
Математика ≫ Видео 0 Ø
Валентина Кириченко
Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются. Математик Валентина Кириченко о постулатах геометрии Евклида, аксиоме Лобачевского и критике Льюиса Кэрролла.
Математика ≫ Видео 0 Ø
Владлен Тиморин
Математик Владлен Тиморин о преимуществах комплексных чисел, кватернионах Гамильтона, восьмимерных числах Кэли и о разнообразии чисел в геометрии.
Математика ≫ Видео 0 Ø
Правдива ли евклидова геометрия? Верно ли она описывает пространство, в котором мы живем? Что значит истинность геометрии? Гаусс был одержимый идеей эмпирической верификации теорем евклидовой геометрии, и даже сам лично принял участие в проверке теоремы о равенстве π суммы внутренних углов треугольника. В этом направлении долгое время Гаусс работал один, продолжая начатую задолго до него критическую линию по пересмотру евклидовой геометрии. Но вот в 1830-е годы появились две важные работы, которые он с энтузиазмом поддержал. Это были работа русского математика, ректора Казанского университета Николая Лобачевского и работа венгра Яноша Бойяи.
Математика ≫ Видео 0 Ø
В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
Математика ≫ Видео 0 Ø
Юрий Кудряшов
Принцип исключенного третьего говорит, что любое утверждение либо истинно, либо ложно. В этом курсе мы откажемся от принципа исключенного третьего. Мы не сможем ни доказывать от противного, ни перебирать случаи. Зато все наши доказательства будут в каком-то смысле конструктивны: доказательство существования объекта всегда можно будет превратить в компьютерную программу, которая строит этот объект. На практике конструктивные доказательства полезнее неконструктивных. Я расскажу о некоторых утверждениях конструктивной математики и о её связи с компьютерными системами доказательств.
Математика ≫ Видео 0 Ø
Жак Сезиано
За два тысячелетия произошло три важных расширения числовой области. Во-первых, около 450 г. до н.э. учёные школы Пифагора доказали существование иррациональных чисел. Их начальной целью было числовое выражение диагонали единичного квадрата. Во-вторых, в XIII-XV веках европейские учёные, решая системы линейных уравнений, допустили возможность одного отрицательного решения. И, в-третьих, в 1572 г. итальянский алгебраист Рафаэль Бомбелли использовал комплексные числа для получения действительного решения некоего кубического уравнения.
Математика ≫ Видео 0 Ø
Владимир Тихомиров
В докладе на примере геометрий Евклида и Лобачевского будет обсуждаться вопрос о том, что такое математическая истина и что означает «непротиворечивость геометрии». Будет рассказано об эволюции геометрических идей от Фалеса и Евклида до Пуанкаре и Гильберта, а также о специальной теории относительности Эйнштейна и об учебнике А. Н. Колмогорова по геометрии.
Математика ≫ Видео 0 Ø
Юрий Матиясевич
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
Математика ≫ Видео 0 Ø
Лев Беклемишев
В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество X имеет хотя бы одну изолированную точку.
Математика ≫ Видео 0 Ø
Галина Синкевич
Труды Кантора в России начали переводить и пересказывать с 1892 года в Одессе, Москве, Томске, Казани, Петрограде. Идеи теории множеств были с энтузиазмом восприняты в России как математиками, так и философами, в их популяризации приняли участие такие известные учёные, как И.Ю. Тимченко, С.О. Шатуновский, А.В. Васильев, П.А. Флоренский, Б.К. Млодзеевский, В.Л. Некрасов, И.И. Жегалкин, П.С. Юшкевич-отец, А.И. Фет, А.П. Юшкевич-сын, А.Н. Колмогоров, Ф.А. Медведев. В Москве в 1911 году возникла школа теории функций и дескриптивной теории множеств. В 1970 году академик Понтрягин оценил теорию множеств как ненужную для молодых математиков, и подготовленный перевод трудов Кантора не вышел в свет. Мы впервые расскажем о трагической судьбе этого перевода.
Математика ≫ Видео 0 Ø
Михаил Раскин
В теории множеств есть несколько известных вопросов о том, следует ли из некоторых аксиом другая аксиома (или гипотеза; аксиома — это просто гипотеза, которой пользуется подавляющее большинство). Как и в других областях математики, недоказуемость можно продемонстрировать с помощью модели, в которой верны предположения, но не верна гипотеза. Для построения одного из самых известных таких примеров, модели теории множеств, в которой есть промежуточная мощность между мощностями натурального ряда и вещественной прямой, Коэн разработал метод вынуждения.
Математика ≫ Видео 0 Ø
|1|2|3|4| >>>