Поиск > Публикации: логика
Публикации: 53
Публикация | Раздел | Комм. |
Отрывок из книги книга Дэвида Дарлинга и Агниджо Банерджи «Эта странная Математика — на краю бесконечности и за ним» о том, как Гедель доказал существование Бога и почему пифагорейцы утопили математика Гиппаса.
|
Математика |
0
|
Ø |
Veritasium
Возможно ли доказать всё, что истинно? Поиски ответа на этот вопрос раскололи математическое сообщество, заставили нас пересмотреть своё представление о бесконечности, помогли выиграть Вторую мировую войну и создать устройство, на котором вы посмотрите это видео. Как именно, расскажет Дерек Маллер в новом видео от Veritasium.
|
Математика ≫ Видео |
0
|
Ø |
Макар Светлый
Потенциальная и актуальная бесконечность. Наивная теория множеств Кантора. Мощность. Парадоксы теории множеств. Интуиционизм, логицизм, формализм. Теория доказательств. Программа Гильберта. Аксиоматики ZFC, ZFD, NBG. Полнота и непротиворечивость формальных систем, теоремы Геделя. Современное состояние оснований математики.
|
Математика ≫ Видео |
0
|
Ø |
Лев Беклемишев
Вычислимая функция f:N→N называется доказуемо рекурсивной в данной формальной теории T, если существует алгоритм её вычисления такой, что в T можно доказать утверждение «для любого x существует y такой, что f(x)=y». В математической логике такие функции изучаются по двум причинам. Во-первых, для данной программы нас часто интересует доказательство её корректности, в частности вопрос о том, завершает ли она работу при любых исходных данных. С другой стороны, варьируя функцию f мы можем ставить для теории T сколь угодно сложные (вплоть до невыполнимости) задачи на доказательство. Тем самым, доказуемо рекурсивные функции могут быть использованы для изучения различных формальных теорий. Такой подход приводит к наиболее впечатляющим на сегодняшний день примерам недоказуемых комбинаторных утверждений. Мы начнем с понятия машины Тьюринга и вычислимой функции. Разберемся, как формальная арифметика может говорить о вычислениях. Поймем, что для любых разумных систем аксиом T их запас доказуемо рекурсивных функций никак не может исчерпывать все вычислимые всюду определенные функции. Отсюда выведем первую теорему Гёделя о неполноте.
|
Математика ≫ Видео |
0
|
Ø |
Лев Беклемишев
Какую часть математических доказательств можно поручить компьютеру? Какие существуют виды интерактивных систем поиска математических доказательств? В чем заключается теорема о четырех красках? И как она была доказана? Математик Лев Беклемишев о теории множеств, интерактивных системах и проблеме о четырех красок.
|
Математика ≫ Видео |
0
|
Ø |
Беклемишев Лев
В чем заключается аксиоматический метод? Как развивалось понятие аксиомы? Кем был разработан аксиоматический метод? Какое место он занимает в математике? И какой критике подвергается этот метод? Математик Лев Беклемишев о неевклидовой геометрии, системе аксиом Гильберта и смысле в математике.
|
Математика ≫ Видео |
0
|
Ø |
Стивен Рид

«Данное высказывание ложно» — это классический вариант формулировки парадокса лжеца. Если предположить, что высказывание истинно, значит, человек должен говорить правду, но он признается, что лжет. А если высказывание на самом деле ложно, то человек должен нас обмануть, но в конечном счете говорит правду. Возникает противоречие: высказывание не может одновременно являться истинным и ложным. Это закон бивалентности: есть всего два истинностных значения, и у каждого высказывания может быть только одно из них. Философ Стивен Рид о неклассической логике, парадоксе Карри и принципе modus ponens.
|
Философия |
0
|
Ø |
Александр Буфетов
В стандартной интерпретации гёделева неразрешимая формула A означает «не существует вывода формулы A», то есть утверждает свою собственную невыводимость в системе S. Таким образом, A является аналогом парадокса лжеца. Рассуждения Гёделя в целом очень похожи на парадокс Ришара. Более того, для доказательства существования невыводимых утверждений может быть использован любой семантический парадокс.
|
Математика ≫ Видео |
0
|
Ø |
Илья Егорычев
Любая научная теория содержит в себе модель, которая описывает ту или иную часть нашего мира и не важно, идет речь о физике или биологии. Для построения любых моделей используются строгие математические принципы, изучив которые можно понять, сколь невероятной полнотой и прогностической силой обладают научные теории. И в основе всего этого лежит математика — наука, которая может строго, но при этом лаконично и полно, описать любую научную теорию, ведь принципы, на которых она строится, невероятно глубинны и фундаментальны. Математика — не наука о числах или уравнениях, которые требуется запомнить, а фундаментальные закономерности мышления, которые мы обнаруживаем в самих себе. В ходе курса мы познакомимся и изучим: Аксиоматический метод; Формальные теории; Изоморфизмы; Модели в логике, физике, биологии.
|
Математика ≫ Видео |
0
|
Ø |
Елена Драгалина-Черная
Философ Елена Драгалина-Черная о генезисе средневековой и современной логики, «Эрлангенской программе» и критерии Тарского.
|
Философия ≫ Видео |
0
|
Ø |
Елена Драгалина-Черная
Со времен Аристотеля логика считается нормативной теорией рассуждения. Если мы рассуждаем нелогично, мы в некотором смысле не рассуждаем вообще. Скажем, Готлоб Фреге, один из творцов современной математической логики, предлагает представить себе неких логических чужаков, которые рассуждают нелогично в нашем смысле. В таком случае, говорит Фреге, мы назовем их рассуждения просто родом некоего неизвестного нам до сих пор безумия. Нормативность логики в отношении рассуждения поддерживает и классик психологии Жан Пиаже, который заявляет с полной определенностью, что рассуждения ― это просто пропозициональные исчисления. Вместе с тем в современной когнитивной психологии накопилась критическая масса свидетельств о расхождении со стандартами логики обыденных рассуждений людей, не искушенных в академической логике. Оказывается, что люди с улицы значительно больше похожи на логических чужаков Фреге, а не на его идеальных логических агентов. В своих обычных рассуждениях они апеллируют к прошлому опыту. Философ Елена Драгалина-Черная о возможности мыслить нелогично, эксперименте Рут Берн и рациональности правила.
|
Философия ≫ Видео |
0
|
Ø |

В середине XIX века были сделаны открытия, которые в корне изменили алгебру и привели к ее окончательному отделению от арифметики. История открытия алгебры кватернионов и булевой алгебры.
|
Математика ≫ Видео |
0
|
Ø |
Юрий Кудряшов
Принцип исключенного третьего говорит, что любое утверждение либо истинно, либо ложно. В этом курсе мы откажемся от принципа исключенного третьего. Мы не сможем ни доказывать от противного, ни перебирать случаи. Зато все наши доказательства будут в каком-то смысле конструктивны: доказательство существования объекта всегда можно будет превратить в компьютерную программу, которая строит этот объект. На практике конструктивные доказательства полезнее неконструктивных. Я расскажу о некоторых утверждениях конструктивной математики и о её связи с компьютерными системами доказательств.
|
Математика ≫ Видео |
0
|
Ø |
Дмитрий Гусев
Законы логики играют большую роль в мышлении и речи. Их нарушение приводит к многочисленным логическим ошибкам, которые засоряют не только научное, но и повседневное мышление, мешают нам думать, общаться, понимать друг друга и самих себя, создавая серьезные коммуникативные затруднения. Неясность и неопределенность мышления, его непоследовательность и сумбурность, противоречивость и необоснованность является прямым результатом нарушения законов логики. Мышление, которое строится на их соблюдении, подобно прозрачному ручью, сквозь воды которого виден каждый камушек и песчинка его дна; ручью, к которому хочется припасть в знойный день, чтобы утолить жажду освежающей и приятной прохладой. Мышление, построенное на нарушениях логических законов, подобно мутному потоку, в котором ничего не видно, и вода совершенно непригодна для питья. Правда, некоторые говорят, что в мутной воде удобнее «ловить рыбу», однако добросовестный человек вряд ли может быть сторонником такой «рыбалки».
|
Философия ≫ Видео |
0
|
Ø |
Юрий Матиясевич
Метод координат, придуманный Рене Декартом, позволяет переформулировать любую задачу «на доказательство» из элементарной (грубо говоря, «школьной») геометрии в виде высказывания о вещественных числах. А что делать потом? Ведь уже для корней алгебраических уравнений пятой степени с одной неизвестной не существует явной формулы «в радикалах», а при переводе геометрических утверждений на алгебраический язык будут возникать сложные утверждения, содержащие много переменных, связанных как кванторами существования (это «неизвестные»), так и кванторами общности (это «параметры»). К счастью, польский логик и математик Альфред Тарский нашел в сороковые годы двадцатого столетия универсальный метод, позволяющий узнавать истинность или ложность любого высказывания про конечное множество вещественных чисел. Первоначальное авторское изложение этого метода занимало целую книгу и было очень трудно для восприятия. С тех пор многие авторы упрощали метод Тарского, и сегодня этот замечательный результат может быть доказан со всеми деталями за два часа и, надеюсь, понят старшеклассниками и младшекурсниками.
|
Математика ≫ Видео |
0
|
Ø |
Лев Беклемишев
Аксиоматические системы, такие как арифметика Пеано и ее фрагменты, являются традиционными объектами изучения в математической логике. В докладе будет рассказано о сравнительно новом подходе к изучению таких систем с алгебраической точки зрения. Будут описаны алгебраические структуры, возникающие при изучении формальной доказуемости, и приведены некоторые применения этих структур к вопросу о порядках роста вычислимых функций для фрагментов арифметики и к построению простых утверждений комбинаторного характера, независимых от аксиом арифметики Пеано. Также будет рассказано о топологической точке зрения на алгебры доказуемости, которая приводит к изучению некоторого интересного класса пространств.
|
Математика ≫ Видео |
0
|
Ø |
Лев Беклемишев
В докладе рассмотрены два класса объектов, имеющих различную природу, но неожиданным образом аналогичные по своим свойствам. С одной стороны, так называемые алгебры доказуемости, возникающие при изучении свойств формальной доказуемости в арифметических теориях. С другой стороны, топологические пространства, наделённые одной или несколькими разреженными топологиями, то есть такими, что любое непустое подмножество X имеет хотя бы одну изолированную точку.
|
Математика ≫ Видео |
0
|
Ø |
В Евклидовой геометрии любое утверждение либо ложно, либо истинно, и третьего не дано. И в начале ХХ века математики наивно полагали, что такая же ситуация должна наблюдаться в любой логически непротиворечивой системе. И тут в 1931 году какой-то венский очкарик — математик Курт Гёдель — взял и опубликовал короткую статью, попросту опрокинувшую весь мир так называемой «математической логики». Гёдель попросту доказал следующее удивительное свойство любой системы аксиом: всякая система математических аксиом начиная с определенного уровня сложности либо внутренне противоречива, либо неполна.
|
Математика |
1
|
Дед Бузюн
26 Мая 2019 10:52:38 >>>
|
Джордана Цепелевич

Всякая надежда на создание единой математической теории, амбициозного проекта, который был предложен математиком Давидом Гильбертом в 19 веке и продолжил существовать, поддерживаемый многими, в 20 столетии, рухнула. Основы математики были далеко не столь надежными, как того хотел бы Гильберт. А Гëдель своими теоремами ясно продемонстрировал, что любая система аксиом, какой бы обширной она ни была, уязвима для возникновения невосполнимых пробелов. Попытки же восполнить их созданием более полной системы породили бы только бóльшее количество утверждений без доказательств — так что и тут возникнет необходимость в усовершенствовании системы, и так далее до бесконечности. И случилось нечто странное: математики решили не обращать на это внимания. Они посчитали, что неполнота систем не имеет непосредственного влияния на их работу.
|
Математика |
0
|
Ø |
Михаил Раскин
Все мы знаем, что математика доказывает импликации. Другими словами, мы доказываем не то, что какое-то утверждение верно, а то, что оно следует из принятых нами аксиом. Но при этом часто недооценивается, насколько сильно можно поменять набор аксиом. Одно из базовых понятий математики, на которых видна степень условности выбора конкретного набора аксиом – понятие множества. Сначала оно казалось совершенно очевидным. К сожалению, этот подход привёл к противоречиям. После этого стали развиваться разные способы работать со множествами не приходя к парадоксам. Понятие множества используется во многих разделах математики, из-за чего работать со множествами обычно учат постепенно, по кусочкам добавляя факты как естественные и самоочевидные основы, пока не получится теория, носящая имя ZFC. Из-за этого часто оказывается заметён под ковёр тот факт, что ZFC лишь один из возможных вариантов и что замена оснований теории множеств совсем не обязана рушить другие разделы математики. Курс будет посвящён рассказу о том, что может быть проблемой при пользовании какой-то аксиоматикой и сколь разнообразны варианты. Предварительные требования будут изменены в соответствии со знаниями и интересами аудитории; я надеюсь, что обозначения →, ∀, ∨, ∈, ∈, ∪, … всё же всем знакомы и привычны настолько, что ошибочно кажутся понятными.
|
Математика ≫ Видео |
0
|
Ø |
|
|