x, y, z

Поиск > Публикации: геометрия

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 105
|1|2|3|4|5|6| >>>
ПубликацияРазделКомм.
Валерий Опойцев
Истоки тригонометрии. Идеи подобия. Параллакс. Основные тригонометрические функции. Единичная окружность как сердцевина тригонометрии. О широком распространении гармонических колебаний. Обзор основных формул. Обратные тригонометрические функции. Чем плохи обратные функции вообще. Почему обратные тригонометрические ещё хуже.
Математика ≫ Видео 0 Ø
Николай Тюрин
Если представлять себе выдающиеся произведения научной литературы как горные маршруты, уводящие в небо, то наш небольшой курс — не более чем прогулка с видом на далекие белоснежные вершины. Мы собираемся просмотреть видимые начала одного из красивейших маршрутов, уводящего далеко за облака, к высоким перевалам и вершинам классической механики. Очень скоро вчерашние школьники сами выйдут на этот маршрут, а пока… давайте немного потренируемся.
Математика ≫ Видео 0 Ø
Михаил Тёмкин
Приставляя тетраэдры друг к другу по граням можно получать примеры симплициальных комплексов — важного математического объекта. Раскрасим треугольники такого сооружения в чёрный и белый цвета и назовём раскраску хорошей, если каждый тетраэдр имеет поровну чёрных и белых граней. Оказывается, что в случае (стандартно симплициально разбитых) маломерных сфер множество белых треугольников оказывается объектом, достойным изучения: листом Мёбиуса или проективной плоскостью. При описании того, как именно эти объекты разбиты на треугольники у нас естественным образом возникнет икосаэдр — замечательный правильный многогранник. Исследование группы его самосовмещений позволит понять, сколько существует хороших раскрасок. По пути нам встретятся такие важные базовые понятия математики, как вышеупомянутые симплициальный комплекс и группа симметрий, действие и пр.
Математика ≫ Видео 0 Ø
Николай Андреев
Почему крышки люков делают круглыми? Что такое фигура постоянной ширины? Какими интересными свойствами обладает треугольник Рело и как его построить? Почему английская 20-пенсовая монета имеет такую необычную форму? Как и чем сверлят квадратные отверстия? Что представляют собой фигуры постоянной ширины в трёхмерном пространстве и какая открытая математическая проблема с ними связана?
Математика ≫ Видео 0 Ø
Николай Андреев
Почему домохозяйки трясут баночки с горохом? Какая упаковка шаров является наиболее плотной в пространствах различных размерностей? Что такое «kissing number» и был ли прав Ньютон, не захотев согласиться на число 13? Какое практическое применение нашло решение задачи о наиболее плотной упаковке шаров в 8-мерном пространстве в 20 веке? Рассказывает Николай Николаевич Андреев кандидат физико-математических наук, заведующий лабораторией популяризации и пропаганды математики Математического института им. В. А. Стеклова РАН.
Математика ≫ Видео 0 Ø
Александр Веселов
Рассмотрим квадратичную форму Q от двух переменных с целыми коэффициентами и зададимся вопросом, какие значения она может принимать на целочисленной решетке. В частном случае стандартной евклидовой формы это классический вопрос о том, когда заданное натуральное число представляется как сумма двух квадратов, исследованный Гауссом. Около 20 лет назад английский математик Джон Конвей предложил геометрический подход к этому вопросу, используя плоское бинарное дерево. Получаемое описание называется топографом формы. В случае когда форма принимает как положительные, так и отрицательные значения, они разделяются бесконечным путем на этом дереве, называемым рекой Конвея. Я расскажу, как река Конвея связана с парусом Арнольда из геометрической теории цепных дробей на целочисленной решетке, восходящей к Клейну.
Математика ≫ Видео 0 Ø
Александр Гайфуллин
Классическая теорема Бойяи–Гервина (1830-е годы) утверждает, что любые два многоугольника равной площади равносоставлены друг с другом: первый многоугольник можно разрезать на конечное число многоугольных частей и затем сложить из этих частей второй многоугольник. Ещё Гаусс задавал вопрос, верно ли аналогичное утверждение для многогранников. А именно, его интересовало, можно ли доказать стандартную формулу для объёма пирамиды (одна треть произведения длины высоты на площадь основания) без использования предельного перехода, то есть разбив пирамиду на конечное число кусков, из которых можно сложить прямоугольный параллелепипед.
Математика ≫ Видео 0 Ø
Валентина Кириченко
Параллельные прямые не пересекаются даже в геометрии Лобачевского. Где-то в фильмах часто можно встретить фразу: «А у нашего Лобачевского параллельные прямые пересеклись». Звучит красиво, но не соответствует действительности. Николай Иванович Лобачевский действительно придумал необыкновенную геометрию, в которой параллельные прямые ведут себя совсем не так, как мы привыкли. Но все же не пересекаются. Математик Валентина Кириченко о постулатах геометрии Евклида, аксиоме Лобачевского и критике Льюиса Кэрролла.
Математика ≫ Видео 0 Ø
Правдива ли евклидова геометрия? Верно ли она описывает пространство, в котором мы живем? Что значит истинность геометрии? Гаусс был одержимый идеей эмпирической верификации теорем евклидовой геометрии, и даже сам лично принял участие в проверке теоремы о равенстве π суммы внутренних углов треугольника. В этом направлении долгое время Гаусс работал один, продолжая начатую задолго до него критическую линию по пересмотру евклидовой геометрии. Но вот в 1830-е годы появились две важные работы, которые он с энтузиазмом поддержал. Это были работа русского математика, ректора Казанского университета Николая Лобачевского и работа венгра Яноша Бойяи.
Математика ≫ Видео 0 Ø
В журнале «Квантик» № 5, 2016 была опубликована задача:«Робот-пылесос, имеющий форму круга, проехал по плоскому полу. Для каждой точки граничной окружности робота можно указать прямую, на которой эта точка оставалась в течение всего времени движения. Обязательно ли и центр робота оставался на некоторой прямой в течение всего времени движения?» Удивительно, но ответ отрицателен — центр мог двигаться не по прямой! Мы дадим несколько решений, начнём издалека, зато узнаем по дороге много интересного.
Математика 0 Ø
Александр Буфетов
Традиция отмечать неофициальный день числа Пи зародилась в Соединенных Штатах почти 30 лет назад, когда известный американский физик Ларри Шоу обратил внимание на то, что 14 марта совпадает с первыми тремя цифрами знаменитой "архимедовой константы" — 3,14. На следующий год, с подачи Шоу, в этот день посетителей музея начали угощать пирогами (из-за сходного звучания слов "пирог" и "Пи" английском языке "pi" — "pie"), после чего к ежегодному отмечанию этой даты постепенно присоединились физики и математики со всего мира.
Математика ≫ Видео 0 Ø
Гаянэ Панина
Некоторые комбинаторные схемы дают на выходе интересные выпуклые многогранники, имеющие отношение много к чему из современной математики. Перестановки дают пермутоэдр (перестановочный многогранник). Где он может пригодиться? (Конфигурационное пространство шарнирного многоугольника). Скобочные последовательности дают ассоциэдр (многогранник Сташефа). Зачем он нужен? («Чудесная» компактификация де Кончини–Прочезе.) Вторичный многогранник (secondary polytope Гельфанда–Капранова–Зелевинского) связан с совершенно иной комбинаторной схемой, и при этом обобщает предыдущие примеры.
Математика ≫ Видео 0 Ø
Гаянэ Панина
Как мы узнаем, выпуклые многогранники можно складывать и перемножать между собой. Далее, выпуклые многогранники можно умножать на рациональные числа. И наконец, что несколько неожиданно, для выпуклых многогранников можно определить логарифм и экспоненту. Вооружившись этими умениями, мы построим математически богатый замечательный объект — градуированную алгебру над Q — алгебру многогранников Питера Мак Маллена. С помощью этой алгебры мы докажем теорему об f-векторе выпуклого многогранника. Эта алгебра хорошо «отражается» в теории алгебраических торических многообразий.
Математика ≫ Видео 0 Ø
Александр Марков
Генно-инженерные эксперименты показали, что количество пальцев у мышей зависит от двух взаимодействующих систем генов-регуляторов. По мере отключения этих генов пальцы становятся многочисленнее, короче и тоньше, а их концы соединяются костно-хрящевой дугой, так что в итоге кисть начинает напоминать плавник примитивной рыбы. Новые данные согласуются с гипотезой о том, что развитие пальцев основано на реакционно-диффузионном механизме самоорганизации, придуманном Аланом Тьюрингом в 1952 году.
Математика 0 Ø
Гаянэ Панина
Курс представляет собой букет из трёх очень старых и трёх очень новых идей. Основной объект — число целых (т.е. с целыми координатами) точек в многограннике. Зачем нужны целые точки? Несколько примеров: многогранник Ньютона, Теорема Бриона — для начала без доказательства, просто в качестве фокуса, а также подсчёт целых метрических ленточных графов. Число целых точек в выпуклом многограннике ведёт себя как полином. Согласно конструкции, в полином, вычисляющий число целых точек, имеет смысл подставлять лишь положительные числа. Чтобы придать смысл отрицательной подстановке, нужны виртуальные многогранники. Двойственность Эрхарта и её естественное обобщение. Секрет фокуса Бриона.
Математика ≫ Видео 0 Ø
Гаянэ Панина
Вот три тесно связанные между собой задачи, которые мы будем обсуждать: Как распрямить плотницкую линейку? Можно ли нарисовать на сфере правильно раскрашенный граф? Верна ли старая гипотеза А. Д. Александрова о характеризации сферы? Попутно будет сформулировано много задач разного уровня сложности (именно исследовательских задач, а не упражнений!). Часть из них — для умеющих и любящих программировать. В курсе будет много картинок.
Математика ≫ Видео 0 Ø
Николай Долбилин
Теорема о существовании и единственности выпуклого многогранника с данными направлениями и площадями его граней, открытая Минковским в 1897 году, наряду с теоремами Эйлера, Коши, А. Д. Александрова, является одной из фундаментальных теорем о многогранниках. Рассказано о нескольких приложениях этой замечательной теоремы.
Математика ≫ Видео 0 Ø
Николай Долбилин
Лекцию читает Долбилин Николай Петрович, профессор, доктор физико-математических наук. Летняя школа «Современная математика», г. Дубна. 28 июля 2008 г.
Математика ≫ Видео 0 Ø
Николай Долбилин
Параллелоэдром (это понятие и сам термин были введены великим кристаллографом Е.С. Федоровым для нужд кристаллографии) называют многогранник, параллельными копиями которого можно заполнить пространство. Обычный строительный кирпич является очевидно частным случаем параллелоэдра. Как и кирпич, любой параллелоэдр имеет попарно параллельные грани, чем объясняется его труднопроизносимое название. Многомерный параллелоэдр имеет многочисленные приложения в геометрии чисел, в теории кодирования, комбинаторной геометрии и т.д. В лекции будет рассказано в первую очередь о двух замечательных теоремах Минковского о свойствах параллелоэдров, а также об открытой проблеме Вороного, которой в этом году исполнился 101 год, и кое о чем еще.
Математика ≫ Видео 0 Ø
Виктор Клепцын
Рассмотрим прямоугольник, составленный из маленьких правильных шестиугольных плиток. Подкинем для каждой из этих плиток монетку, и, если выпадет орел, объявим ее открытой, а иначе закрытой. С какой вероятностью от левого края прямоугольника до правого можно дойти путем, проходящим только по открытым плиткам? Этим и многими другими схожими вопросами занимается теория протекания. Ответ на вопрос о вероятности пробоя дается (на первый взгляд пугающей) формулой Карди, предсказанной им в 1991 г. из соображений конформной теории поля. Строго эта формула — в гораздо более приятно выглядящей переформулировке Л. Карлесона — была доказана лишь десять лет спустя С. К. Смирновым в его работах 2001-го года (одних из тех, за которые в 2010-м он получил премию Филдса). В нашем курсе мы, хоть и не в деталях, обсудим доказательство этой формулы — опирающееся на такую удивительную вещь, как дискретный комплексный анализ.
Математика ≫ Видео 0 Ø
|1|2|3|4|5|6| >>>