x, y, z

Поиск > Публикации: Александр_Веселов

Поля поиска:




Запрос:
Номер раздела:
Сортировать:
Публикации: 2
ПубликацияРазделКомм.
Александр Веселов
Рассмотрим квадратичную форму Q от двух переменных с целыми коэффициентами и зададимся вопросом, какие значения она может принимать на целочисленной решетке. В частном случае стандартной евклидовой формы это классический вопрос о том, когда заданное натуральное число представляется как сумма двух квадратов, исследованный Гауссом. Около 20 лет назад английский математик Джон Конвей предложил геометрический подход к этому вопросу, используя плоское бинарное дерево. Получаемое описание называется топографом формы. В случае когда форма принимает как положительные, так и отрицательные значения, они разделяются бесконечным путем на этом дереве, называемым рекой Конвея. Я расскажу, как река Конвея связана с парусом Арнольда из геометрической теории цепных дробей на целочисленной решетке, восходящей к Клейну.
Математика ≫ Видео 0 Ø
Александр Веселов
Лекцию читает Веселов Александр Петрович. Летняя школа «Современная математика», г. Дубна. 22 июля 2017 г.
Математика ≫ Видео 0 Ø