ABC-Гипотеза Дубна, 2013 г. К. Конрад Листок для лекции 2

- 1. Одна такая ABC-тройка в \mathbf{Z}^+ , что $c=\mathrm{rad}(abc)$ это (1,1,2). Есть ли другие примеры?
- 2. Есть 12 таких ABC-троек в \mathbf{Z}^{+} , что rad(abc) = 30. Найдите их.
- 3. Все известные ABC-тройки удовлетворяют

$$\max(|a|, |b|, |c|) < \operatorname{rad}(abc)^2.$$

Предполагая, что это неравенство верно всегда, используйте его для того, чтобы доказать Великую Теорему Ферма для всех степеней $n \geq 6$. (ВТФ для n < 6 была доказана давно: для n = 3 Эйлером, для n = 4 Ферма, и для n = 5 независимо Дирихле и Лежандром.)

- 4. Покажите, что следующие варианты ABC-гипотезы, первый для положительных целых и второй для ненулевых целых, эквивалентны (конечно, исключения в каждом варианте зависят от ε):
 - Для всех $\varepsilon > 0$ все такие тройки (a,b,c) в \mathbf{Z}^+ , что a+b=c и НОД(a,b)=1, кроме конечного числа, удовлетворяют $c<\mathrm{rad}(abc)^{1+\varepsilon}$.
 - Для всех $\varepsilon > 0$ все тройки (a,b,c) в $\mathbf{Z} \{0\}$, что a+b=c и $\mathrm{HOД}(a,b)=1$, кроме конечного числа, удовлетворяют $\mathrm{max}(|a|,|b|,|c|) < \mathrm{rad}(abc)^{1+\varepsilon}$.

Указание: Можно переписать 5 - 32 = -27 в виде 5 + 27 = 32.

5. Перепишите неравенство

$$\max(|a|, |b|, |c|) < \kappa_{\varepsilon} \operatorname{rad}(abc)^{1+\varepsilon}$$

из АВС-гипотезы в виде

$$\kappa_{\varepsilon} \ge \frac{\max(|a|, |b|, |c|)}{\operatorname{rad}(abc)^{1+\varepsilon}}.$$

Рассмотрев $a=1,\,b=3^{2^n}-1,$ и $c=3^{2^n}$ для больших n, используйте второй вариант для того, чтобы показать, что $\kappa_\varepsilon\to\infty$ при $\varepsilon\to0.$

Указание: В первой лекции мы увидели, что для этого выбора a, b, и c, получается $\operatorname{rad}(abc) < 3c/2^{n+1}$. Здесь c зависит от n.

- 6. Рассмотрим следующие утверждения.
 - (1) Для всех $\varepsilon > 0$, все такие тройки (a,b,c) в $\mathbf{Z} \{0\}$, что a+b=c и $\mathrm{HOД}(a,b)=1$, кроме конечного числа, удовлетворяют $\mathrm{max}(|a|,|b|,|c|)<\mathrm{rad}(abc)^{1+\varepsilon}$. (Исключения зависят от ε .)
 - (2) Для всех $\varepsilon > 0$ существует такая константа $\kappa_{\varepsilon} > 0$, что если a+b=c и HOД(a,b)=1, то $\max(|a|,|b|,|c|) \leq \kappa_{\varepsilon} \operatorname{rad}(abc)^{1+\varepsilon}$. (Нет исключений.)
 - (3) Для каждого $m \ge 1$ уравнение rad(abc) = m имеет конечное число решений среди ABC-троек (a, b, c).

Первое и второе утверждения —два варианта ABC-гипотезы для троек ненулевых целых. Мы доказали во второй лекции, что из (3) следует эквивалентность (1) и (2).

Покажите что из (1) для некоторого ε следует (3), и из (2) для некоторого ε следует (3).

7. Для $n \geq 3$ и $d,k \in \mathbf{Z} - \{0\}$ покажите, что из ABC-гипотезы следует, что уравнение $x^n - dy^n = k$ имеет конечное число целых решений (x,y). Случай n=3 был разобран во второй лекции. Рассмотрите сперва случай, когда x=0 и y=0.

Указание: Используйте ABC-гипотезу для $\varepsilon < n/2 - 1$.

- 8. Зафиксируйте положительное целое k и целые $m,n\geq 2$, хотя бы одно из которых больше 2 (т.е., $(m,n)\neq (2,2)$).
 - а) Покажите, что из ABC-гипотезы следует, что для каждого $\varepsilon > 0$ существует такая константа $C_{\varepsilon,m,n} > 0$, что все целые решения (x,y) уравнения $y^n = x^m + k$ ограничены:

$$|x| \le C_{\varepsilon,m,n} k^{\frac{1/m}{1-1/m-1/n}(1+\varepsilon)}, \quad |y| \le C_{\varepsilon,m,n} k^{\frac{1/n}{1-1/m-1/n}(1+\varepsilon)}.$$

Рассмотрите сперва случаи, когда x=0 или y=0, а потом используйте ABC-гипотезу для ненулевых x и y тем же способом, что мы применили ее для уравнения Морделла $y^2=x^3+k$.

б) Покажите, что все взаимно простые решения (x,y) уравнения $y^n = x^m + k$ можно оценить через радикал от k: для всех $\varepsilon > 0$ существует такая константа $C'_{\varepsilon,m,n} > 0$, что

$$|x| \le C'_{\varepsilon,m,n} |\operatorname{rad} k|^{\frac{1/m}{1-1/m-1/n}(1+\varepsilon)}, \quad |y| \le C'_{\varepsilon,m,n} |\operatorname{rad} k|^{\frac{1/n}{1-1/m-1/n}(1+\varepsilon)}.$$

9. Зафиксируйте ненулевые целые a, b и k, и целые $m, n \geq 2$, хотя бы одно из которых больше 2 (т.е., $(m, n) \neq (2, 2)$). Выведите из ABC-гипотезы, что для всех $\varepsilon > 0$ всякое решение уравнения $ax^m + by^n = k$ в ненулевых числах имеют оценки сверху через a, b, m, n и k:

$$|x| \le C_{\varepsilon,m,n,a,b} |k|^{\frac{1/m}{1-1/m-1/n}(1+\varepsilon)}, \quad |y| \le C_{\varepsilon,m,n,a,b} |k|^{\frac{1/n}{1-1/m-1/n}(1+\varepsilon)}$$

для некоторой константы $C_{\varepsilon,m,n,a,b}$, которая независима от k, и получите похожие оценки, когда x и y взаимно просты, используя $\operatorname{rad} k$ вместо k в правой части. Это включает результаты предыдущих двух упражнений как частные случаи.

10. Неравенство $\max(|a|,|b|,|c|) < \mathrm{rad}(abc)^{1+\varepsilon}$ в ABC-гипотезе эквивалентно тому, что

$$\frac{\ln \max(|a|,|b|,|c|)}{\ln \operatorname{rad}(abc)} < 1 + \varepsilon.$$

Назовём отношение в левой части *качеством ABC*-тройки (a,b,c), и обозначим его через Q(a,b,c). Например,

$$Q(23, 25, 48) = \frac{\ln(48)}{\ln(690)} \approx 0,59226, \quad Q(3, 125, 128) = \frac{\ln(128)}{\ln(30)} \approx 1,42657.$$

а) Покажите, что ABC-гипотеза эквивалентна тому, что для каждого t>1 лишь конечное число ABC-троек (a,b,c) имеют качество большее, чем t.

В частности, так как есть ABC-тройки, качество которых больше 1, эквивалентная формулировка ABC-гипотезы выше означает, что есть ABC-тройка наибольшего качества. В таблице ниже выписаны ABC-тройки самого большого известного качества. Первая тройка в списке, имеющая наибольшее известное качество, получена Эриком Рейссатом (Eric Reyssat) в 1987 г. Оно меньше 2, поэтому считается, что $\max(|a|,|b|,|c|) < \operatorname{rad}(abc)^2$

для всех ABC-троек.

a	b	c	Качество
2	$3^{10} \cdot 109$	23^{5}	1.6299
11^{2}	$3^2 \cdot 5^6 \cdot 7^3$	$2^{21} \cdot 23$	1.6259
$19\cdot 1307$	$7 \cdot 29^2 \cdot 31^8$	$2^8 \cdot 3^{22} \cdot 5^4$	1.6234
283	$5^{11} \cdot 13^2$	$2^8 \cdot 3^8 \cdot 17^3$	1.5807
1	$2\cdot 3^7$	$5^4 \cdot 7$	1.5678

б) Если вы слушали курс анализа, используйте тройки $a=1,\,b=3^{2^n}-1,$ $c=3^{2^n}$ для того, чтобы доказать, что $\overline{\lim}\,S\ge 1$, где

$$S = \{Q(a, b, c) : (a, b, c) = ABC$$
-тройка $\}$

и $\overline{\lim}$ значит "lim sup". Также докажите, что ABC-гипотеза эквивалентна соотношению $\overline{\lim}\, S=1.$

11. Пусть k(t) непостоянный многочлен в $\mathbf{C}[t]$. Напомним, что теорема Дэвенпорта утверждает, что для всех ненулевых многочленов $f(t), g(t) \in \mathbf{C}[t]$, которые удовлетворяют $g(t)^2 = f(t)^3 + k(t)$, выполнена оценка

$$\deg f \le 2(\deg k - 1).$$

Это было выведено в первой лекции из теоремы Мейсона-Стотерса в предположении, что f(t) и g(t) взаимно просты.

а) Докажите, что из теоремы Мейсона-Стотерса следует, что

$$\deg f \le 2(\deg k - 1)$$
 и $\deg g \le 3(\deg k - 1)$

без предположения о взаимной простоте f и g. Используйте идеи из доказательства того, что из ABC-гипотезы следует гипотеза Холла.

б) Если f и g взаимно просты, докажите более строгие оценки

$$\deg f \le 2(\deg \operatorname{rad} k - 1), \quad \deg g \le 3(\deg \operatorname{rad} k - 1),$$

где вместо k подставлено rad k.

- с) Что можно сказать об оценках на $\deg f$ и $\deg g,$ если $g^2=f^3+k$ и $k\in {\bf C}^\times?$
- 12. Пусть m и n целые, большие или равные 2 и одновременно не равные 2 (т.е., $m \geq 2, \ n \geq 2, \ \mathrm{u} \ (m,n) \neq (2,2)$).
 - а) Пусть $g^n = f^m + k$ в $\mathbf{C}[t]$, где f, g, и k ненулевые и не все постоянны. Используя теорему Мейсона-Стотерса, покажите, что

$$\deg f \le \frac{1/m}{1 - 1/m - 1/n} (\deg k - 1), \quad \deg g \le \frac{1/n}{1 - 1/m - 1/n} (\deg k - 1).$$

б) Если HOД(f,g) = 1, докажите более строгие оценки

$$\deg f \le \frac{1/m}{1 - 1/m - 1/n} (\deg \operatorname{rad} k - 1), \quad \deg g \le \frac{1/n}{1 - 1/m - 1/n} (\deg \operatorname{rad} k - 1).$$

Оценки здесь похожи на те, что в Упражнении 8. Когда m=3 и n=2, они становятся оценками из Упражнении 11.