МА-1.3. ПОСЛЕДОВАТЕЛЬНОСТИ И ПРЕДЕЛЫ

§1. Фундаментальные последовательности

Порок исходного определения предела заключается в опоре на знание самого предела. Имея дело с $a_n \to a$, мы часто не имеем представления о значении a, и тогда инструменты типа $|a_n - a| < \varepsilon$ теряют смысл. А если a_n не сходится (ни к чему), как это доказать? Перебирать всевозможные a?

Снимает напряжение и даёт в руки эффективный инструмент понятие фундаментальной последовательности.

• Последовательность a_n называется фундаментальной, или последовательностью Коши, если по любому $\varepsilon > 0$ можно указать такое N, что

$$|a_n - a_m| < \varepsilon$$

для любых n, m > N.

То есть у *последовательности Коши* члены с большими номерами не могут сильно отличаться друг от друга.

- **Критерий Коши.** Последовательность a_n сходится в том и только том случае, когда она фундаментальна.
- ◀ Если a_n сходится, то она является *последовательностью Коши*. Это устанавливается «в одно касание». Действительно, в случае $a_n \to a$ все a_n при достаточно больших n оказываются в сколь угодно малой ε -окрестности точки a, и там уже a_n от a_m не могут сильно отличаться (не более, чем на 2ε).

Обратно. Пусть a_n-n оследовательность Коши. Покажем, что она имеет предел. Возьмём произвольную сходящуюся к нулю последовательность $\varepsilon_1,\ldots,\varepsilon_k,\ldots$, все $\varepsilon_k>0$. И пусть N_1,\ldots,N_k,\ldots таковы, что

$$|a_n - a_m| < \varepsilon_k$$
 при $n, m \geqslant N_k$.

Тогда все a_n при $n \geqslant N_k$ принадлежат отрезкам

$$I_k = [a_{N_k} - \varepsilon_k, a_{N_k} + \varepsilon_k],$$

длины которых убывают до нуля при $k \to \infty$. Чтобы воспользоваться *пеммой о вложенных отрезках*, перейдем к последовательности вложенных отрезков $J_k \subset I_k$, которые строятся по правилу

$$J_1 = I_1, \quad J_{k+1} = J_k \bigcap I_{k+1}.$$

Теперь «лемма» гарантирует существование общей точки a у всех J_k , которая и есть предел a_n , поскольку J_k стягиваются к a, и все $a_n \in J_k$ при $n \geqslant N_k$. \blacktriangleright

§2. Числовые ряды

Особое внимание в анализе уделяется числовым последовательностям вида

$$A_n = a_1 + \dots + a_n. \tag{1}$$

Их называют частичными суммами бесконечных рядов

$$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} a_n = a_1 + \dots + a_n + \dots$$
 (2)

• Конечный или бесконечный предел A частичной суммы (1) определяют как сумму ряда (2). Ряд, имеющий конечную (бесконечную) сумму, называют сходящимся (расходящимся).

Примеры

• Сумма бесконечной геометрической прогрессии

$$1 + q + q^2 + \dots = \frac{1}{1 - q}, \quad |q| < 1.$$

• Вещественное число в десятичной записи

$$a_0, a_1 a_2 \dots = a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots$$

• Часто встречается гармонический ряд,

$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots = \infty$$
 (3)

 \mathcal{A} окажем (3). Установленное ранее неравенство $\left(1+\frac{1}{n}\right)^n < e$ после логарифмирования даёт $n\ln\left(1+\frac{1}{n}\right) < 1$, откуда

$$\frac{1}{n} > \ln\left(1 + \frac{1}{n}\right) = \ln(n+1) - \ln n.$$

Суммирование n первых таких неравенств приводит к

$$h_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} > \ln(n+1),$$

что влечёт за собой расходимость последовательности h_n .

Бесконечные ряды представляют собой эквивалентный язык для изучения последовательностей и пределов. Действительно, сходимость ряда означает сходимость варианты a_n . Обратно, сходимость любой последовательности b_n равносильна сходимости ряда

$$b_1 + (b_2 - b_1) + \dots + (b_n - b_{n-1}) + \dots$$

Отметим два простых факта.

- Сходящиеся ряды можно почленно складывать, вычитать и умножать на константу. (?)
- $Ecnu\ pnd\ (1)\ cxodumcs,\ mo\ a_n \to 0.$

 $[\]overline{^{1}Bapuahma}$ — синоним числовой последовательности.

Интересно, что последнее утверждение на миг заставляет задуматься. Когда все $a_n > 0$, результат сразу очевиден. В общем случае возникает заминка, которая тривиально разрешается. Последовательности A_n и A_{n-1} сходятся к одному и тому же пределу. Поэтому

$$a_n = A_n - A_{n-1} \rightarrow 0.$$

Многие результаты в теории числовых рядов представляют собой несложные переформулировки известных фактов из теории пределов. «Снять маску» обычно нетрудно.

- **1.** Когда все $a_n \ge 0$, ряд $a_1 + a_2 + \dots$ сходится, если его частичные суммы ограничены сверху, и расходится в противном случае.
- 2. Теорема сравнения положительных рядов

$$(A): a_1 + a_2 + \dots, (B): b_1 + b_2 + \dots$$

Если $a_n \leq b_n$, начиная с некоторого n, — либо $\frac{a_{n+1}}{a_n} \leq \frac{b_{n+1}}{b_n}$, — u ряд (B) сходится, то u ряд (A) сходится. Если (A) расходится, то u (B) расходится. Ряд (B) называют **мажорирующим** рядом для (A).

$$\Pi$$
ример. $\frac{1}{n^2}<\frac{1}{n(n-1)}$ при $n\geqslant 2.$ Но ряд $\sum_{n=2}^{\infty}\frac{1}{n(n-1)}$ сходится,

$$\sum_{n=2}^{\infty} \frac{1}{n(n-1)} = \frac{1}{1} - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \dots < 1.$$

Поэтому сходится и ряд $\sum_{n=2}^{\infty} \frac{1}{n^2}$, причём здесь неожиданно всплывает число π ,

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6},$$

но это уже другая история.

- **3.** Если $\frac{a_n}{b_n}$ имеет конечный строго положительный предел, то оба положительных ряда (A) и (B) сходятся или расходятся одновременно.
- В общем случае ряд (2) называют абсолютно сходящимся, если сходится ряд $|a_1| + |a_2| + \dots$ из абсолютных величин. Любой абсолютно сходящийся ряд сходится (?).
- Любой знакопеременный ряд

$$a_0 - a_1 + \dots + (-1)^n a_n + \dots$$
 (BCE $a_n > 0$)

при условии монотонного стремления a_n к нулю — сходится. Поэтому, например, не сходящийся абсолютно, ряд $1-\frac{1}{2}+\frac{1}{3}-\dots$, сходится.

◀ Частичные суммы

$$A_{2k} = (a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2k-1} - a_{2k})$$

монотонно возрастают, поскольку все скобки положительны из-за монотонности убывания a_n , и ограниченны,

$$A_{2k} = a_1 - (a_2 - a_3) - \dots - (a_{2k-2} - a_{2k-1}) - a_{2k} < a_1.$$

Поэтому $A_{2k} \to A$. Но тогда и $A_{2k+1} = A_{2k} + a_{2k+1} \to A$. \blacktriangleright

Приведем два признака сходимости положительных рядов, накрывающих 90% практических ситуаций.

• Признак Коши. Ряд (2) сходится, если

$$\sqrt[n]{a_n} \to a < 1,$$

u расходится, если a > 1.

 \blacktriangleleft Для достаточно малого $\varepsilon>0$ — такого, что $a+\varepsilon<1$, — начиная с некоторого n=N, будет $a_n\leqslant (a+\varepsilon)^n$. Поэтому ряд (2) мажорируется сходящимся рядом

$$\sum_{n=0}^{\infty} (a+\varepsilon)^n. \quad \blacktriangleright$$

• Признак Даламбера. Ряд (2) сходится, если

$$\frac{a_{n+1}}{a_n} \to a < 1,$$

 $a \ ecnu \ a > 1, - pacxodumcs^2.$

Примеры

Ряд

$$\sum_{n=1}^{\infty} \frac{1}{n^s} = 1 + \frac{1}{2^s} + \frac{1}{3^s} + \dots$$
 (4)

cxodumcs $npu\ s>1\ u\ pacxodumcs$ $npu\ s\leqslant 1.$ Расходимость (4) при s=1уже была установлена. Отсюда тем более следует расходимость (4) при s<1. Установим сходимость при s>1. Очевидно,

$$\frac{1}{(2^k+1)^s} + \frac{1}{(2^k+2)^s} + \dots + \frac{1}{(2^{k+1})^s} < 2^k \frac{1}{(2^{k+1})^s} < \frac{1}{2^{k(s-1)}}.$$

Поэтому

$$\sum_{n=1}^{\infty} \frac{1}{n^s} < \sum_{k=0}^{\infty} \frac{1}{2^{k(s-1)}},$$

а мажорирующий ряд справа сходится, ибо представляет сумму бесконечно убывающей геометрической прогрессии со знаменателем $1/2^{s-1}$.

2. Ряд $\sum_{n=1}^{\infty} \ln \left(1 + \frac{x}{n}\right)$ при любом x > 0 расходится, поскольку

$$\ln\left(1+\frac{x}{n}\right):\frac{1}{n}=\ln\left[\left(1+\frac{x}{n}\right)^{\frac{n}{x}}\right]^{x}\to 1.$$

При изучении пределов и числовых рядов довольно часто оказывается полезным следующий результат.

• **Теорема Штольца.** Если последовательность y_n монотонно возрастает и $y_n \to +\infty$, то обе последовательности

$$\frac{x_n}{y_n} \qquad u \qquad \frac{x_n - x_{n-1}}{y_n - y_{n-1}}$$

²Доказательство аналогично предыдущему.

имеют одинаковый предел (либо обе расходятся).

Инструмент заточен на неопределённости $\frac{x_n}{y_n}$ типа $\frac{\infty}{\infty}$. *Теорема Штольца* особенно хорошо работает в ситуациях типа следующей:

если
$$a_n \to a$$
, то $\frac{a_1 + \dots + a_n}{n} \to a$.

Результат получается «сам собой», если положить

$$x_n = a_1 + \dots + a_n, \qquad y_n = n.$$

Упражнения

1.
$$\lim_{n \to \infty} \frac{1 + \sqrt{2} + \sqrt[3]{3} + \dots + \sqrt[n]{n}}{n} = 1.$$

2.
$$\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \frac{1}{k+1}.$$

3.
$$\lim_{n \to \infty} \left(\frac{\sqrt[n]{a} + \sqrt[n]{b}}{2} \right)^n = \sqrt{ab} \quad (a, b > 0).$$

4. В случае
$$a_n \to a > 0$$
 ряд $\sum_{n=0}^{\infty} (a_n x)^n$ сходится при $|x| < \frac{1}{a}$.

5. Ряд $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ сходится при любом x (воспользуйтесь признаком Даламбера).

6. Ряд
$$\sum_{n=0}^{\infty} n^k x^n$$
 сходится при любых $|x| < 1$ и k .

Числовые ряды служат базой для последующего изучения функциональных рядов, которые образуют одно из магистральных направлений в анализе. Это кое-что объясняет в расстановке акцентов, наблюдаемой в учебниках. Например, особое внимание к бесконечным суммам $\sum_{n=0}^{\infty} a_n b_n$ может

показаться странным, если не знать, что в дальнейшем подразумевается переход к изучению рядов $\sum_{n=0}^{\infty} a_n x^n$.

Достаточно естественными представляются вопросы влияния на сходимость рядов стандартных операций: перегруппировки членов (изменения порядка суммирования), умножения рядов. При этом выясняется, что между абсолютно сходящимися рядами и всеми остальными проходит мощный водораздел. Абсолютно сходящиеся ряды «беспроблемны». Они допускают любое изменение порядка суммирования. Их можно без предосторожностей перемножать,

$$\sum_{n=0}^{\infty} a_n = A, \quad \sum_{n=0}^{\infty} b_n = B \quad \Longrightarrow \quad \sum_{n,k=0}^{\infty} a_n b_k = AB,$$

независимо от порядка суммирования членов $a_n b_k$. В отсутствие абсолютной сходимости возможны любые сюрпризы.

• **Теорема Римана.** Не сходящийся абсолютно ряд всегда допускает изменение порядка суммирования, при котором его сумма оказывается равной любому наперёд заданному числу (конечному или бесконечному).